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Abstract 
	
Ocean acidification (OA) is a global issue with particular regional significance in the 
California Current System, where social, and economic, and ecological impacts are 
already occurring. Though OA is a concern that unifies the entire West Coast region, 
managing for this phenomenon at a regional scale is complex and further 
complicated by the large scale and dynamic nature of the region. Currently, OA-
relevant data collected on the West Coast is inconsistent and cannot create a 
complete picture of the state of ocean acidification through time and across the 
region. Furthermore, marine managers do not currently have a framework to assess 
the risk OA may pose to the resources they manage. We developed tools to analyze 
gaps in the West Coast ocean acidification monitoring network and evaluate the 
spatial extent of OA hotspots—defined by biologically-relevant thresholds—with 
existing marine protected areas. The result is a framework that can be used to 
strategically fill OA monitoring gaps across the West Coast region and to identify the 
state of OA levels within West Coast marine protected areas. These two tools will 
enable scientists and marine managers in the California Current System to address 
the regional problem of ocean acidification through the implementation of 
management solutions at the local level.  
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Client Introduction 
 
The West Coast Ocean Data Portal (WCODP) is a project to increase discovery and 
connectivity of ocean and coastal data and people to better inform regional resource 
management, policy development, and ocean planning. The Portal informs priority 
West Coast ocean issues such as tracking sources and patterns of marine debris, 
adaptation to sea-level rise, understanding impacts of ocean acidification on our 
coasts, and marine planning. 
 
The West Coast Ocean Data Portal was originally established in concert with the West 
Coast Governors Alliance on Ocean Health (WCGAOH), now the West Coast Ocean 
Partnership (WCOP). More recently, the Portal has become associated with other 
large regional planning efforts like that of the National Ocean Policy. In accordance 
with this mandate for coordinated marine spatial planning and priority setting at the 
regional level, partners from the three West Coast states organized the West Coast 
region’s effort and has recently adopted the Data Portal under one of its primary 
objectives. 
 
Established in 2015, the West Coast Regional Planning Body (RPB) is a partnership 
between federally-recognized tribes, federal government agencies, and the states of 
Washington, Oregon and California focused on enhanced coordination and 
communication around planning and management of current and emerging ocean 
uses, as well as information and data-sharing on the West Coast of the U.S. 
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Executive Summary 
 
Ocean acidification (OA), which results largely from atmospheric CO2 emissions 
(Doney et al. 2009) is a problem of increasing concern along the West Coast of the 
United States. Ocean dynamics in the region are driven by the California Current 
System, which creates conditions that are naturally more acidic relative to global 
coastlines (Feely et al. 2012). OA is accelerated relative to global averages in this 
system via upwelling currents, coastal erosion, and runoff, which contribute CO2 and 
nutrients to surface waters (Ekstrom et al. 2015). However, the intensity of 
acidification varies across time and space; some areas of the ocean are changing at 
faster rates than others, creating “hotspots” (Chan et al. 2017). These hotspots are a 
product of both physical oceanographic processes and anthropogenic inputs, but the 
precise location of hotspots is not well-understood. While OA has been modeled for 
the West Coast, it is not clear how accurate the models are for predicting hotspot 
formation or to what extent the modeled hotspots vary in space and time. 
 
The West Coast also has a history of strong marine conservation policies. In this 
region, a network of marine protected areas (MPAs), including marine reserves, 
sanctuaries, and other classifications, has been established in state and federal 
waters. The objectives of MPAs can vary, including biodiversity conservation, 
protecting fisheries, and preserving educational and cultural resources (Airamé et al. 
2003). However, West Coast MPAs were largely established without accounting for 
the effects of ocean acidification. It is not yet known whether OA hotspots coincide 
with MPAs and how these protected areas will respond to intensifying OA. 
 
To begin to uncover the answers to these unknowns, marine managers along the 
West Coast convened to form the West Coast Ocean Acidification and Hypoxia 
Monitoring Taskforce, a joint project of the Pacific Coast Collaborative and the 
Interagency Working Group on OA. The Taskforce began compiling a monitoring 
inventory (OAH Inventory) to bridge ocean acidification monitoring efforts from a 
multitude of research, agency, and nonprofit monitoring projects to establish a more 
cohesive network. The OAH Inventory, while still in progress, has already revealed 
gaps in monitoring for acidification parameters along the West Coast. Managers and 
researchers must fill critical knowledge gaps to better understand the co-occurrence 
of OA hotspots and MPAs and the response of MPAs to these threats. 
 
Thus, the West Coast Ocean Data Portal, which serves the West Coast Regional 
Planning Body and marine scientists and managers, tasked our team with analyzing 
gaps in ocean acidification monitoring efforts using the OAH inventory. In addition, 
we assessed spatial and temporal trends in OA hotspotting and the relationship 
between hotspots and marine spatial management via MPAs. These analyses will 
ultimately help the WCODP accomplish its goals to: provide access to valuable 
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datasets in a way that is useful for data managers; and advance quantitatively 
informed management decisions when planning for MPA resilience to OA. 
 
We obtained the latest data in OA monitoring inventory efforts through WCODP 
partners to analyze data collection gaps in the monitoring network. Our team 
developed a methodology to identify gaps based on spatial coverage, temporal 
frequency, and adequacy for calculating aragonite saturation state (“carbonate 
completeness”). We incorporated oceanographic variability into our analysis, 
acknowledging that the spatial coverage and frequency of monitoring should be 
higher where the ocean dynamics are more variable. We ran a preliminary analysis 
with the most updated version of the OAH inventory and identified severe and 
moderate gaps along the coast in parts of Northern California, Central Oregon, the 
Columbia River estuary, and Puget Sound. 
 
We used cruise data from 2013 to generate an interpolation of aragonite saturation 
state “hotspots” along the West Coast, from Central California to Washington, based 
on biologically-relevant thresholds. Aragonite saturation state was used specifically 
because it is a biologically-relevant form of calcium carbonate which provides insight 
into potential impacts on foundational species and fisheries (McLaughlin et al. 2015). 
Our team combined this hotspot analysis with a map of MPAs to obtain a snapshot of 
where hotspots might coincide with protected areas for a given season. We compared 
this with hotspot maps from 2007, 2011, and 2012 and observed some change in 
hotspot location between years. Particular locations, such as the Columbia River 
estuary, showed consistent hotspotting over multiple years. We then calculated the 
mean aragonite saturation state and percent hotspot coverage of each MPA and 
generated a list of the top 10 MPAs with the lowest aragonite saturation state, all of 
which fall within Oregon’s coastline. While the results from our analysis are limited 
by data constraints, we provide an example of how regional ocean acidification data 
can be used to assess impacts to MPAs. This framework can be re-produced with 
more robust OA models as they become available.  
 
The results of our analyses lead to a summary of strategies for effective spatial 
management of coastal ecosystems to enhance resilience to OA. The preliminary gap 
analysis shows locations along the coast where monitoring could be enhanced by 
adding a sensor or increasing the frequency of observations for existing monitoring 
assets, which are potentially lower cost alternatives to deploying additional buoys or 
other assets. Our hotspot analysis can provide marine managers a method for 
assessing acidification impacts to MPAs and developing a prioritization for 
management actions based on the goals, habitat types, and acidification threat level 
for each MPA. Our team also outlined a number of management strategies that 
marine managers can leverage to ameliorate acidification impacts. Supporting 
policies to reduce coastal erosion and riverine nutrient inputs can prevent the 
exacerbation of acidification and hotspots. Identifying appropriate areas for 
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vegetation (kelp and seagrass) restoration can reduce heightened levels of CO2 and 
dampen acidification. 
 
Ocean acidification is a global problem that also has very localized effects on marine 
ecosystems. By identifying gaps in OA monitoring, researchers and managers can 
make informed decisions for maximizing monitoring efforts with limited funding. 
Further, our project provides a method to assess OA impacts on MPAs. Our team 
hopes that our analyses provide a useful framework for researchers and managers 
working to better understand the implications of OA on the West Coast.	
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Objectives 
 
Our team worked with the West Coast Ocean Data Portal and West Coast natural 
resource managers to assess the spatial coverage of the existing monitoring network. 
This assessment describes spatial patterns in OA, as well as the relationship of OA 
patterns to spatial management via marine protected areas (MPAs). Specifically, the 
project: 
 

● created a methodology to analyze gaps in OA monitoring efforts using 
the recent West Coast Ocean Acidification and Hypoxia Monitoring 
Inventory (joint project of the Pacific Coast Collaborative and the 
Interagency Working Group on OA) 
 

● assessed the spatial resolution of OA hotspotting, and evaluated the 
spatial relationship between OA hotspots and MPAs 

 
● summarized strategies for effective spatial management of coastal and 

marine ecosystems to enhance ecosystem resilience to OA in reference 
to economically important representative species 
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Project Significance 
 
As ocean conditions change, one of many issues of concern is ocean acidification. 
Changing seawater chemistry presents environmental, ecological, and economic 
consequences for the West Coast of the United States, where regional ocean 
circulation patterns heighten the effects of OA. While the primary driver of OA - 
carbon dioxide emissions - is global in nature, additional parameters are locally 
influential (Gruber et al. 2012). There are multiple factors which may affect OA 
conditions locally, including ocean circulation and upwelling, coastal erosion, and 
runoff. These factors, combined with seasonal upwelling, create hotspots of OA along 
the coast (Hauri et al. 2013). These relative influences are modeled, mapped, and 
understood to varying degrees, but still not at a comprehensive regional level. 
 
Responding to OA and its effects requires a concerted management focus throughout 
the West Coast, where MPAs were established under various policy tools and 
approaches (Chan et al. 2016). While the specific structure, purpose, and framework 
of these protective policies vary, the overarching objectives are similar—to protect 
and sustain a variety of marine resources (Klein 2008). In some cases, the system of 
protected locations was developed with a holistic view of how they might form a 
network. Other MPAs were developed independently in time and space to protect 
specific resources of interest (Airamé et al. 2003). The result is a patchwork of 
protections, governed by multiple layers of jurisdiction and policies. It is not well-
understood whether West Coast MPAs will provide adequate resilience of protected 
resources to OA. Since little was known about OA processes or effects when many 
MPAs were established, design and management decisions were not made with 
regard to their vulnerability to OA impacts (Chan et al. 2016). 
 
Addressing the impacts of OA on these large MPA networks requires a multi-state 
effort, particularly for the West Coast where the California Current is a regional 
driver of acidification conditions for Washington, Oregon, and California together. 
This regional style of resource management is echoed by the National Ocean Policy, 
an Executive Order implemented during the Obama administration in 2010. In line 
with the goals of the National Ocean Policy to ensure the health of ocean and coastal 
resources, the three states and several tribal nations convened to form the RPB. To 
promote robust planning and decision-making, the WCODP supports the RPB. 
 
The target audiences for the project are: the WCOP, a collection of tribal, state, and 
federal government representatives with a focus on ocean health, and the RPB, a 
formal body of tribal, state, and federal government representatives with a focus on 
marine planning to address ocean management challenges. The WCODP serves the 
WCOP and RPB as a data-providing and decision-making platform across the West 
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Coast region. An additional target audience is the West Coast Ocean Acidification and 
Hypoxia Science Panel (OAH Panel). This project is significant to our clients because 
of the WCOP and RPB’s identification of OA as a priority issue that connects the 
entire region around a planning and management challenge. 
 
This project will help marine policy makers and managers understand how well 
multiple layers of management address OA. Through mapping OA hotspots with 
MPAs, this project will allow MPA managers to better assess OA impacts on a more 
local scale, while also providing a regional context for which areas within the 
California Current System may be more impacted than others. By analyzing gaps in 
monitoring data and summarizing effective monitoring strategies, this project also 
assists regional planners in improving how the West Coast assesses ocean health. By 
better assessing, documenting, and integrating the policy and scientific frameworks, 
this project has the potential to contribute to the collective understanding of 
opportunities to improve resource planning and management frameworks The goal is 
that the project can inform adaptive management strategies for responding to 
changing ocean conditions. Acquired data, maps, and deliverables will be accessible 
on the data portal to ensure public access to project findings. This improved 
understanding will inform policy and decision-making by ocean managers. 
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Literature Review 

Ocean Acidification and “Hotspots” 

Ocean Acidification 
Anthropogenic activities, primarily the burning of fossil fuels, have caused a nearly 
40% increase in atmospheric carbon dioxide (CO2) levels since the Industrial 
Revolution (Solomon et al. 2007). However, this rate of increase has been tempered 
by the world’s oceans acting as a natural carbon sink. It is estimated that the ocean 
absorbs about 30% of all anthropogenic carbon emissions (Sabine and Feely 2007). 
Though this reduces the level of emissions that remain in the atmosphere, this 
increased carbon input is not without consequence for the world’s oceans.  
  
Ocean acidification, like climate change, is caused by anthropogenic carbon dioxide 
emissions, and has been called “the other CO2 problem” (Henderson 2006, Doney et 
al. 2009). When the ocean absorbs carbon dioxide from the atmosphere, seawater 
chemistry is altered, resulting in decreased pH and increased acidity. On average, 
there has been a global decline in pH of 0.1 units, from 8.2 to 8.1 since pre-industrial 
times (Orr et al. 2005, Rhein et al. 2013). Although this change may seem 
insignificant, given the log scale of pH, this decrease is correlated with a 26% 
increase in hydrogen ion concentration in seawater. In the future, it is projected that 
pH could decrease even further, an additional 0.3-0.4 units under the IPCC “business 
as usual” trajectory (Orr et al. 2005). 
 
Increased acidity in seawater is caused by the dissolution of carbon dioxide, which 
forms carbonic acid (H2CO3), a weak acid. With increased CO2 inputs and thus 
increased acid formation, both ocean pH and the concentration of spare carbonate 
ions (CO3) decrease (Rhein et al. 2013). When carbonate concentrations decrease, 
the saturation of calcium carbonate (CaCO3), and its more soluble form, aragonite, 
also decrease.  Traditionally, pH, and more recently, aragonite saturation state, are 
monitored as indicators for changing ocean chemistry conditions. Aragonite is the 
form most widely used by many calcifying organisms on the West Coast, and thus 
serves as an appropriate and informative monitoring parameter. 
 
Decreased calcium carbonate saturation in coastal waters has potential consequences 
for marine organisms that rely on calcium carbonate ions. Calcifying organisms use 
CaCO3 to produce their shells and skeletons. Thus, organisms such as crustaceans, 
corals, echinoderms, molluscs, and planktonic calcium carbonate producers, like 
foraminifera and coccolithophores, respond negatively to decreases in aragonite 
saturation state (Fabry et al. 2008, Kroeker et al. 2010). These effects vary across 
species, but include shell dissolution, reduced growth rates, reduced fertility, or even 
mortality for some plankton (Fabry et al. 2008). 
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Recently, attention and concern has turned toward the susceptibility of the California 
Current System to future changes in ocean acidification. As an Eastern Boundary 
Upwelling System, the California Current displays low pH and undersaturation with 
respect to aragonite (Hauri et al. 2009). This is due largely to the upwelling zones 
along the West Coast that seasonally create high levels of nutrients and dissolved 
carbon dioxide in surface waters, thereby decreasing carbonate saturation state, pH 
and oxygen levels. Upwelling results from the strengthening of northwesterly winds 
in the early spring, and lasts until late summer or early fall, creating a predictable 
seasonality to high OA levels (Feely et al. 2008). Due to its naturally low carbonate 
saturation state, models predict that the California Current System could be more 
susceptible to future changes in ocean acidification sooner, relative to other areas of 
the global ocean (Hauri et al. 2009, Gruber et al. 2012). 
 
Further, variability of acidification is high in coastal regions due to the confounding 
factors that contribute to OA and their difference in spatial and temporal scales. 
Duarte et al. (2013) found that the annual variation in pH of coastal waters can be as 
much as 1 unit, altering local acidity by up to a factor of ten. This underscores the 
importance of accounting for temporal variation in the consideration of where and 
when OA impacts might be greatest in an ecosystem. 
 
Hotspots 
“Hotspots” are spatial areas that represent a characteristic anomaly or rapid change 
in a parameter of environmental quality (Reid 1998). In spatial planning, hotspots 
are used to identify priorities for conservation due to their high level of threat or 
importance for ecosystem services, as in the case of a “biodiversity hotspot” (Myers et 
al. 2000). The context of this term is crucial to understanding its application in a 
particular subject, as hotspots can imply superior quality or elevated degradation. 
 
In regard to changing ocean conditions, hotspots are generally defined as areas 
where ocean conditions have deteriorated, often along multiple ocean health 
indicators. These departures from normal conditions are measured in two primary 
ways - either relative to historical observations or relative to spatial surroundings 
(Hobday and Pecl 2013, Kelly et al. 2011). For example, when examining global 
change of sea surface temperature, Hobday and Pecl (2013) chose to define the top 
10% of areas of most rapid change as “hotspots”. 
 
While a formal definition for hotspots of ocean acidification does not yet exist, these 
zones typically represent areas of the ocean where pH has decreased significantly 
relative to historic baselines (Kelly et al. 2011). Likewise, specific boundary 
conditions have not been set for defining hotspots, however there is consensus that a 
long-term time component is crucial for distinguishing hotspots from seasonal or 
other short-term variations (Hofmann et al. 2014, Kelly et al. 2011). 
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Nearshore coastal waters are particularly susceptible to becoming hotspots of ocean 
acidification. Strong upwelling currents bring CO2-rich waters to the surface, 
exacerbating the uptake of CO2 at the surface through air-sea gas exchange (Ekstrom 
et al. 2015). In addition, most rivers have lower aragonite saturation states relative to 
the ocean, reducing aragonite saturation in estuarine waters (Duarte et al. 2013). 
Rivers also deposit nutrients from onshore anthropogenic sources into the ocean, 
contributing further to acidification. The coastal waters of California and the Pacific 
Northwest are areas of rapid acidification, where OA hotspots are concerning for 
biodiversity and fisheries (Ekstrom et al. 2015). Additionally, Feely et al. (2008) 
identified several places with increasingly shallow saturation horizons along the West 
Coast, particularly in Northern California and Southern Oregon. 
	
Indicators of Ocean Acidification - Aragonite Saturation State 
Given the importance of understanding how ocean acidification hotspots could 
intensify and change, researchers have increasingly focused on how OA is monitored 
and which metrics are its most appropriate indicators. Although acidity (i.e. the 
presence of hydrogen ions) in seawater is measured by pH, scientists often use 
different metrics to capture and analyze changes within the ocean carbonate system. 
Particularly for OA, saturation state (often expressed as “omega”) is used to measure 
how saturated, and thus how available, calcium carbonate is within seawater. 
Research has shown that although changes to ocean conditions are cumulative, it is 
the calcium carbonate saturation state that has the greatest singular influence on 
shell production and growth (for that of bivalves, snails, etc.), more so than pCO2 or 
pH (Waldbusser et al. 2015).  
 
Due to the increasing evidence of the biological importance of calcium carbonate 
saturation state and its connection to biomineralization processes, recent research has 
begun to focus on this measure, particularly of the more soluble CaCO3 polymorph - 
aragonite. Because this form of calcium carbonate is more soluble, organisms are 
more likely to build their shells with aragonite, but also more vulnerable to 
acidification conditions compared to organisms that build shells with other 
polymorphs, such as calcite (Feely et al. 2012). Saturation state of aragonite is also 
predicted to decline at a more rapid rate than that of calcite (McCoy et al. 2018). 
Thus, aragonite saturation state is emerging as the “gold standard” indicator for 
ocean acidification observation and research (McLaughlin et al. 2015). Instead of 
using more traditional measurements of acidification levels through pH observations, 
the metric of saturation state provides a more direct indication of how conditions 
may affect the biological response to an acidification event. 
 
Due to the seasonality of upwelling, which transports subsurface CO2-rich waters to 
the surface, observations of aragonite saturation state on the West Coast of the U.S. 
show variation from as low as 0.69 to as high as 3.9 (Feely et al. 2008, Harris et al. 
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2013). Mean saturation state was 2.2 in a study on coastal Oregon waters for 2007-
2011 (Harris et al. 2013). Alin et al. (2012) found that aragonite saturation state 
varied from 1 to 2.88 in a study of the southern California Current System. 
 
Several factors contribute to the variability in aragonite saturation state, including 
upwelling, net community production, and air-sea gas exchange. As a result, 
aragonite saturation state varies on multiple time scales. In instances of strong 
upwelling, surface aragonite saturation state can vary by as much as 3 units in one 
day (Harris et al. 2013). There is also a strong seasonal component to variability in 
aragonite saturation state. Values of aragonite saturation state tend to be highest in 
the summer and lowest in the winter, where biological productivity reduces seawater 
CO2 (Alin et al. 2012, Pelletier et al. 2018). However, variability within seasons tends 
to be highest in the summer due to the combination of biological activity that 
coincides with the spring and summer upwelling season (Pelletier et al. 2018, Harris 
et al. 2013, Alin et al. 2012). Depending on the strength of upwelling influence in 
coastal areas, aragonite saturation state can also be driven to annual lows during the 
spring and summer upwelling season (Hauri et al. 2013). In more sheltered coastal 
areas, biological activity tends to drive variability in aragonite saturation state 
(Pelletier et al. 2018). 
 
Thus far, anthropogenic CO2 inputs have reduced aragonite saturation state by 
approximately 0.2-0.5 units since pre-industrial levels (Juranek et al. 2009, Hauri et 
al. 2009, Harris et al. 2013). Values of aragonite saturation state are expected to 
continue to decline and become more variable. Currently, upwelling brings waters to 
the surface that were in contact with the atmosphere on the order of decades ago 
(Feely et al. 2008). Because of steadily increasing atmospheric CO2, it is expected 
that future upwelled waters will have even higher CO2 concentrations leading to the 
positive feedback of reductions in aragonite saturation state.  
 
Variability within the carbonate system as a whole has also increased over time. 
Between 1982 and 2015, seasonal differences in sea surface pCO2 rose by 2.3 uatm 
per decade (Landschutzer et al. 2018). This effect could have negative consequences 
for marine biota, as they are exposed to more acidified waters earlier in a season, and 
annual peak acidity is more likely to cross critical thresholds for marine organisms 
(Landschutzer et al. 2018). Increased variability in seawater carbonate chemistry, 
continued rise in CO2 emissions, and predicted strengthening of upwelling currents 
necessitate long-term, high-resolution monitoring of aragonite saturation state 
(Harris et al. 2013, Barton et al. 2012). 
 
Additional OA stressors - Hypoxia and Rising Temperatures 
In addition to ocean acidification, hypoxic events threaten the health of coastal 
ecosystems. Hypoxia occurs when coastal waters are deprived of oxygen throughout 
the water column. It can stress marine biota, often resulting in large die-offs of fish 
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and other organisms (Chan et al. 2008). The leading cause of coastal hypoxia is 
eutrophication; however, coastal ecosystems with strong eastern boundary currents, 
such as the California Current System, are also subject to hypoxic conditions resulting 
from upwelling (Chan et al. 2008). Hypoxia is heightened in the summer and fall 
seasons when stratification of the water column prevents mixing and re-oxygenation 
(Melzner et al. 2013). Particularly, the coupling of dissolved oxygen and carbon 
dioxide through biological processes can lead to low oxygen conditions that intensify 
ocean acidification (Hales et al. 2015). Strong relationships between dissolved 
oxygen and carbonate system parameters, namely pCO2, support this biological 
coupling (Borgesa and Gypensb 2010, Melzner et al. 2013). CO2 produced during the 
decomposition of organic matter elevates total dissolved inorganic carbon and pCO2, 
further exacerbating acidification conditions (Melzner et al. 2013). This positive 
relationship has implications for predicting aragonite saturation state declines under 
hypoxic conditions since eutrophication exacerbates acidification conditions (Pelletier 
et al. 2018). 
 
Chan et al. (2008) also report the recent emergence of anoxic conditions, along with 
the increased severity of hypoxic events in nearshore environments within the 
California Current System. Rising ocean temperatures are also expected to exacerbate 
anoxic and hypoxic conditions in coastal waters through intensified and prolonged 
stratification of the water column (Melzner et al. 2013, Hales et al. 2015). 

Impacts of Ocean Acidification 

Ecological Effects 
Changes in ocean chemistry, specifically the carbonate system, will likely impact 
marine species and communities. Projected changes to species abundance and 
distribution could spread through many trophic levels of marine food webs (Doney et 
al. 2009, Kroeker et al. 2013). Although the ecosystem effects of ocean acidification 
are difficult to predict, large impacts are anticipated in the California Current System 
due to the wide range of species that build shells from calcium carbonate, which are 
particularly vulnerable to acidified conditions (Guinotte et al. 2006).   
  
The increase of CO2 in the ocean alters the balance of carbonate and bicarbonate, 
which are physiologically important compounds in many marine organisms for 
photosynthesis. As their concentrations increase, so does primary productivity.  
However, altered carbonate concentrations negatively affects organisms that require 
a particular carbonate mineral for calcification. For many species, ocean acidification 
depresses calcification rates or creates an energy tradeoff to calcification, increasing 
physiological stress (Kroeker et al. 2010). 
  
Impacts to individual organisms are variable, and some species are more vulnerable 
to OA than others (Table 1). Vulnerable species include pteropods, mollusks, 
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coccolithophores, echinoderms, and corals. Many of these have already showed 
reduced calcification and growth rates under high CO2 conditions in laboratory 
experiments (Doney et al. 2009). Sensitivity differs between organisms and some 
species may be able to control internal pH and cope with OA stress better than others 
(Kroeker et al. 2010). In fact, some species have actually shown increased 
calcification under OA conditions; however this is usually accompanied by a tradeoff 
to other physiological processes (Iglesias-Rodriguez et al. 2008). For example, species 
that are unable to compensate for changes in pH experience lower rates of 
metabolism and growth, as well as decreased fitness; this is due to changes in energy 
allocation under OA conditions (Kroeker et al. 2010).  
 
Aragonite saturation state is often used to predict biological and ecological effects. 
Thus, its observation can help identify the correlation between ocean acidification 
and a particular species response. The aragonite saturation state of seawater is the 
product of the concentrations of dissolved calcium and carbonate ions divided by 
their product at equilibrium. When aragonite saturation state is 1, seawater is in 
equilibrium with respect to aragonite. When aragonite saturation is <1, aragonite is 
undersaturated and calcifying organisms can potentially enter a state of dissolution 
(McLaughlin et al. 2015). However, many calcifying organisms experience 
detrimental effects of OA at aragonite saturation states under 2. Additionally, there 
have been recorded incidents of die-off and shell dissolution tipping points at 
hatcheries along the West Coast at a saturation state of 1.7 (Barton et al. 2012, Chan 
et al. 2017).  
 
 Calcareous bivalves, including mussels, oysters, and clams respond negatively to low 
carbonate mineral saturation states, even when saturation state is above 1 (Barton et 
al. 2012). For example, studies of the California mussel show alterations in shell 
structure, including increased disorder between shells of mussels from 2010 
compared to historical mussels from decades to centuries ago (McCoy et al. 2018). 
Greater variability in traits between current and historic mussel populations indicate 
that present-day mussels are undergoing increased environmental stress (McCoy et 
al. 2018). Oysters are also particularly vulnerable to ocean acidification because they 
use aragonite to build their shells (Barton et al. 2012). The larval stage is expected to 
be particularly susceptible to negative effects of acidification (Barton et al. 2012). 
 
Acidified conditions can disrupt interspecific interactions amongst species, leading to 
cascading effects within ecological communities. In rocky intertidal ecosystems, OA 
can alter predator-prey interactions; for example, observed reductions in the escape 
response of black turban snails to the predatory sea stars affects algae (Jellison et al. 
2016). These changes to predator-prey interactions are another confounding factor 
that results in reorganization or shifting of marine community structures in response 
to OA. 
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Table 1. Expected vulnerability of marine organisms to OA. Table from Fabry et al. 
(2008). 

 
Adaptive capacity of species to ocean acidification 
The fate of species under acidified conditions is still largely unknown. Species 
response can vary between shifting distribution, phenotypic plasticity, or genetic 
modification and evolutionary adaptation (Hoffmann and Sgrò 2011). Without at 
least one of these strategies in place, species run the risk of extinction (Foo et al. 
2012). The response that will most likely sustain a species for the long-term over 
changing ocean conditions is evolutionary adaptation (Hoffmann and Sgrò 2011). 
 
There is evidence to suggest that species will be able to adapt to higher seawater 
acidity. This ability to adapt is known as ‘adaptive capacity’ (Foo et al. 2012). 
Adaptive capacity generally refers to the likeliness of a species to adapt to increased 
stress and changing environmental conditions. Adaptive capacity is supported by 
heritable genetic variance; genetic variation within a population provides a means for 
selection of traits suited to varying environmental conditions via evolution (Foo et al. 
2012). Higher genetic variability is indicative of greater adaptive capacity within a 
population (Kelly et al. 2013). This variability differs between species and 
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populations; however, it is likely that species exposed to higher environmental 
variation possess a greater capacity for evolutionary adaptation (Kelly et al. 2013). 
 
The global gradient of pH is approximately 0.3 units, which is relatively small 
compared to the projected change in pH before the end of the century, which is also 
0.3 units (Orr et al. 2005). This could present challenges for species living within 
ranges of relatively low pH variability. In the California Current System, pH 
variability is naturally relatively high from seasonal and latitudinal gradients (Kelly et 
al. 2013). In a study by Kelly et al. (2013) on the purple urchin along the California 
coast, larval urchins were smaller in size under elevated pCO2 conditions; however, 
the researchers found that larval body size was highly variable within the population 
under the acidic scenario. Thus, there is potential for larval body size to rapidly 
evolve in response to different pCO2 levels. This study supported the hypothesis that 
species occupying habitats with higher environmental variability are less sensitive to 
acute changes in conditions. Parker et al. (2011) also found evidence for evolutionary 
adaptation via carry-over effects in the Sydney oyster under acute acidification. 
Adults that were exposed to higher pCO2 conditions reared larvae that increased in 
size and developed faster than larvae reared from adults exposed to the ambient 
control seawater when both larvae were exposed to acidic conditions. Thus species 
could potentially benefit from maternal and carry-over effects when adults respond to 
acute stressors. 
 
Species responses to chronic elevated pCO2 conditions are not well documented 
(Parker et al. 2011, Fabry et al. 2008). Studying chronic impacts is more difficult and 
requires long-term coupled biological and chemical monitoring. However, some 
evidence suggests that chronic stressors could lead to significant shifts in ecosystems 
and changes in dominant species (Fabry et al. 2008). Additionally, chronic elevated 
pCO2 could lead to metabolic suppression, which reduces an organism’s growth and 
reproductive potential (Fabry et al. 2008). While these effects are not lethal, they 
could impact a species survival over longer time scales. 

Economic and Social Impacts 

Beyond the ecological impacts of ocean acidification on calcifying organisms and 
their related food webs, ocean acidification may have significant economic impacts by 
placing additional pressures on fished species. The exact impacts to the fisheries can 
be difficult to estimate, since not all impacts of ocean acidification have been 
quantified. However, OA impacts have been estimated for several important fishery 
species. For example, molluscs are both globally significant in commercial market 
value and suffer impacts from OA. Global costs of OA impacts on the mollusc market 
is estimated at over $100 billion, assuming increasing demand and income growth 
(Narita et al. 2012).   
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Economic impacts of OA are also reaching a broader public understanding at the 
regional level. For example, the Pacific Northwest region relies on high productivity 
to support its seafood industry. In 2012, the National Marine Fisheries Service 
(NMFS) reported that the commercial seafood industry on the West Coast provided 
around 220,000 jobs and $32.7 billion in commercial sales (Alin et al. 2015). 
Calcifying organisms comprise four of the ten most valuable West Coast commercial 
fisheries (Table 2, Alin et al. 2015). A 2007 report of fisheries revenue found that 
96% of commercial fishing ex-vessel revenue on the West Coast was attributed to 
species affected by ocean acidification (Hauri et al. 2009). Furthermore, NMFS 
reported in 2014 that recreational fishing was estimated to support 18,800 jobs and 
$2.5 billion in sales. Threats to the West Coast commercial and recreational fishing 
industry due to OA could impact a wide variety of stakeholders. 
 
The Pacific Northwest is home to productive shellfish fisheries, in part, due to some 
of the same physical processes that drive OA: upwelling of nutrient-rich waters. OA 
has already begun to impact these coastal economies; the Pacific Northwest oyster 
industry has already experienced $110 million in economic loss and impacts to 3,200 
jobs (Ekstrom et al. 2015). Larval production at oyster hatcheries on the West Coast 
have suffered significant impacts due to declines in growth and survival resulting 
from acidified waters (Barton et al. 2012). On a smaller statewide scale, impacts to 
marine food webs could influence the state of Washington’s seafood industry, 
estimated to contribute $1.7 billion to the state economy and to generate over 40,000 
jobs (Washington Blue Ribbon Panel on OA). These estimates do not account for the 
benefits healthy marine ecosystems have on West Coast for tourism and other 
industries that rely on the aesthetic value of biodiversity.  
 
Shellfish fisheries also represent an important part of cultural heritage for many 
Native American tribes of the Northwest (Washington Blue Ribbon Panel on OA). 
Beyond coastal economies, OA threaten the cultural heritage and traditional food 
sources of many Native American tribes on the Pacific Coast. Specifically, impacts to 
shellfish may impact the culture, economy, and diets of Native Americans (Lynn et al. 
2013). Due to the diverse impacts OA may have on Native American tribes, 
adaptation strategies within these communities are multifaceted and complex. Social 
and cultural impacts of OA on Native American tribes should be considered in 
management decisions regarding OA (Lynn et al. 2013). 
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Table 2. Commercial landings for invertebrates with calcium carbonate shells, tests, 
or exoskeletons that are within the most valuable fisheries on the West Coast (CA, 
OR, WA) from 2003 to 2012. Data was taken from NMFS commercial landings data, 
table adapted from Alin et al. (2015). 

Species Total Value (2003-2012) 

Dungeness crab $1,312,233,926 

Pacific oyster $411,768,620 

Pacific geoduck clam $400,817,096 

Manila clam $199,346,707 

Ocean shrimp $152,899,359 

California spiny lobster $86,553,611 

Sea urchin $75,240,059 

 

Predicting Ocean Acidification in the California Current 

Current Data Monitoring of OA on the West Coast 
Given the pertinence of understanding how OA levels trigger these biological and 
socioeconomic impacts, streamlined conduits for data and analysis is crucial. 
Monitoring networks can provide organization for collection and synthesis of data 
across an entire region. Real time, in situ data collection allows researchers to 
monitor and track changes in ocean conditions over time. Combining data from 
monitoring assets across space can inform regional scale patterns. Monitoring data 
also validates oceanographic models, which are useful for predicting patterns in OA 
broadly across time and space, outside the scope of physical monitoring. Models can 
provide more precise predictions and forecasts that inform decision-making by 
coastal and marine managers, policy makers, and fishermen. 
 
Along the West Coast, various federal and state agencies, research organizations and 
universities are monitoring biological and physical ocean conditions related to OA. As 
a joint project of the Pacific Coast Collaborative and the Interagency Working Group 
on OA, the OAH Monitoring Task Force created a comprehensive inventory of OA-
relevant monitoring assets from California to Alaska. The inventory includes static 
monitoring locations (e.g. moorings and buoys) and cruise transects that collect OA 
data. Each monitoring asset includes information on its location (nearshore, 
estuarine, intertidal, offshore, open ocean), frequency of data observations, 
biogeochemical characteristics (salinity, temperature, pressure, turbidity, nutrients), 
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whether monitoring pairs with biological data collection, and which parameters of 
the carbonate system are collected (Appendix 1). 
 
Ideal OA Monitoring Network 
Marine managers and researchers are coming to a consensus around what 
characteristics define an optimal OA monitoring network to optimize its efficiency 
and robustness on a regional scale. An ideal monitoring network includes monitoring 
assets that collect parameters to calculate aragonite saturation state (“carbonate 
complete”). The scientific community acknowledges this metric as a key indicator for 
assessing OA and comparing acidification conditions at varying spatial and temporal 
scales. (Doney et al. 2009, McLaughlin et al. 2015, Waldbusser et al. 2015).  
 
The Global Ocean Acidification Observing Network (GOA-ON) was established to 
integrate OA monitoring networks across the globe. GOA-ON guidelines can shape 
regional OA monitoring networks, which may adapt data requirements based on 
stakeholders and information needed for decision support (Alin et al. 2015). The 
California Current Acidification Network (C-CAN) has created a list of the ideal 
characteristics of an OA monitoring network for the California Current, which 
includes using aragonite saturation state as indicator data for the current state of OA 
in the California Current (McLaughlin et al. 2015). To assess aragonite saturation 
state accurately and relate changes in ocean chemistry to ecosystem impacts, C-CAN 
has established a maximum of 0.2 units of deviation in uncertainty in the calculation 
of aragonite saturation. This is similar to GOA-ON’s uncertainty levels, which allow 
for 10% uncertainty.  
 
Since a variety of agencies with varying resources manage data monitoring, it is 
important to establish a minimum standard for datasets. This means establishing the 
highest priority data as a minimum standard and then encouraging agencies with 
more resources to expand monitoring capabilities. C-CAN recommends prioritizing 
the measurements needed to determine aragonite saturation state: temperature, 
salinity, dissolved oxygen (DO), and two of the four carbonate parameters (pH, total 
alkalinity, pCO2, dissolved inorganic carbon). Agencies with more resources are 
encouraged to collect other helpful data, such as more carbonate parameters, 
atmospheric pCO2, and nutrient concentrations (McLaughlin et al. 2015). Linking 
biogeochemical monitoring to biological monitoring networks will allow for better 
understanding of how OA affects ecosystems. A variety of temporal scales and high 
spatial coverage is best for monitoring changing ocean conditions in the California 
Current System. Continuous high frequency data is imperative for understanding 
daily and seasonal patterns; this is best accomplished using fixed monitoring assets 
such as buoys. To fill gaps of spatial coverage, cruises should be used in areas lacking 
continuous monitoring (McLaughlin et al. 2015). Lastly, an ideal monitoring network 
must have accessible data that is easily shared. Existing data should be used to guide 
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objectives and methods of field and laboratory experiments to support marine 
managers and coastal policy decision makers (McLaughlin et al. 2015). 
 
Since the California Current System includes coastal and estuarine ecosystems, 
monitoring here should reflect the diverse habitats and stakeholders within the 
region. Key resources of the California Current System include shellfish, benthic fish, 
nurseries for many fish species, seagrasses, and kelps, which impact a large number 
of stakeholders invested in OA conditions. Stakeholders concerned with monitoring 
networks and OA modeling include the recreational fishermen, tourism industries, 
fisheries managers, public health agencies, and government agencies. An ideal 
monitoring network will apply to the varied needs of these stakeholders (Avin et al. 
2015). 
 
Finally, because the ocean is such a variable and dynamic environment, 
oceanographic conditions such as ocean acidification change across space and time. It 
is important to capture these changes in a monitoring network, which means that it is 
necessary to have more monitoring where there is more variability (Halpern, personal 
communication, 2017). High resolution regional data on aragonite saturation is not 
available at this time. However, sea surface temperature and dissolved oxygen have 
been identified as the strongest correlators of aragonite saturation state (Juranek et 
al. 2009). By determining spatial and temporal variation of these variables, a proxy 
can be developed for the variability of aragonite saturation.  
 
Current OA Modeling on the West Coast 
As OA worsens globally, regional models are imperative for understanding localized 
conditions of OA. There are presently three OA models which predict OA in the 
California Current. These models vary temporally, spatially, and in utility. Coastal 
policy makers and MPA managers can use models to decide how to best manage in 
the face of the changing OA conditions. This is discussed in further detail in the 
Methodology section (Appendix 12). 

Marine Protected Areas (MPAs) 

Marine protected areas are discrete spatial locations within oceans, seas, and 
estuaries that are established to protect natural or cultural resources. Marine 
Protected Areas can be established and managed by all levels of government, 
including federal, state, local and tribal governments (Wenzel and D’Lorio 2011). 
Goals of MPAs vary, but include conservation of biodiversity, protection of fisheries or 
other goods of economic value, protection of resources with educational value, and 
the preservation of cultural heritage (Airamé et al. 2003). MPAs can be categorized 
by their focus, their level of protection, or their permanence. There are many 
different kinds of MPAs with different levels of restrictions, but most MPAs are multi-
use (Wenzel and D’Lorio 2011). Many MPAs aim to conserve fisheries through 
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establishing no-take marine reserves, which have been shown to be as effective as 
traditional fisheries management techniques (such as setting a catch limit) for 
managing yield (Botsford et al. 2003). 
 
When the first MPAs were established in the twentieth century in the United States, 
many were created in isolation to serve a specific purpose. Scientists and managers 
now have greater interest in creating networks of ecologically connected networks of 
MPAs (Gleason 2010). The planning process of creating networks can be enhanced by 
strong legislation that allows for funding and enforcement of MPAs, and agency 
commitment to implementation. Managers can also include a mechanism to gauge 
the effectiveness of MPAs within the design, as it may be necessary to act under 
uncertainty (Halpern and Warner 2003). 
 
West Coast MPAs 
There are approximately 400 different marine protected areas, parks, and 
management zones currently established on the West Coast, all of which vary in size, 
goals, and jurisdictional agency. The Marine Life Protection Act, which passed in 
1999, mandated and established a network of California MPAs through a community 
and scientifically driven process. Similarly, a series of State House bills created the 
original set of marine reserves in Oregon (CDFW 2012, Oregon State Legislature 
2012). Marine protected areas and no-take reserves have been established extensively 
throughout Washington on a piece-by-piece basis since the state’s first reserve was 
established for recreational divers in the 1970s (WDFW). Recently, scientists fear that 
new climate-induced threats are challenging the effectiveness of the current network 
of MPAs. When many MPAs were established, their spatial extent and management 
plans were created without taking into account future climate projections (CDFW 
2012). However, through advanced modeling and strategic monitoring, it is 
becoming easier to evaluate the effectiveness of MPAs and to prioritize new areas for 
protection that are adaptive to changing conditions. 
 
Assessing the Impacts of Climate Change on MPAs 
Threats of climate change on marine ecosystems highlight the need for MPA planners 
and managers to address impacts on marine biodiversity and ecosystem services. 
First, managers must understand how climate change threats, such as sea level rise 
and ocean acidification, impact an MPA and its specific goals. Although climate 
change is a global phenomenon, localized regions relative to the scale of MPAs may 
experience intensified effects due to local stressors, such as nutrient inputs (Gruber et 
al. 2012). Second, managers should consider how some of these climate change 
threats may be addressed through different protective policies, replicating habitat 
types, and ensuring that MPAs are adequately spaced. Furthermore, it is important to 
protect functional groups of species, which serve similar ecological roles within an 
ecosystem, while strategizing how to support ecosystem functions and services 
(McLeod et al. 2009). 
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Direct climate impacts to MPAs may start at a more cellular level, such as when 
warming waters alter metabolic rates at an individual or population-wide scale. On a 
population level, changes in oceanographic processes may also affect species 
abundance and interspecific interactions. MPA planners should assess the biotic 
impacts along with abiotic alterations to marine ecosystems from climate change, 
such as sea level rise, changes to upwelling patterns, and intensifying storms. The 
cumulative effects of these climate change impacts could lead to serious impacts on 
ecosystem productivity or services (Bernardt 2013). 
 
MPAs and Ecological Resilience 
Ecological resilience refers to the ability of an ecosystem to resist frequent or severe 
disturbances, recover from these disturbances, and adapt to new changes. Typically, 
this breaks down into two broad categories of resilience: resistance to change and the 
capacity for recovery (Levin and Lubchenco 2008). Managing for resilience involves 
an ecosystem-based management approach, in which it is necessary to prioritize 
diversity, connectivity and adaptive capacity (Bernardt 2013). These prioritizations 
are not vastly different from the goals of traditional MPA planning. However, climate 
change will most likely increase the frequency and severity of disturbances and there 
is uncertainty about how quickly species and communities will be able to adapt to 
changing conditions (Hoegh-Goldberg and Bruno 2010).  
 
Managing for resilience through ensuring diversity increases the ability of a 
functional group of species to respond to disturbance within an ecosystem; species 
with higher resilience may be able to compensate for less resilient species. For 
example, an increase in the numbers of species that contribute to the same 
ecosystems function leads to higher response diversity (Elmqvist et al. 2003). 
Additionally, connectivity among populations and ecosystems allows for recovery 
from major disturbances by ensuring a refuge of sources of nutrients and propagules 
(Bernhardt and Leslie 2013). Managing for adaptive capacity requires planning and 
forethought about how species’ ranges or behavior shifts in response to disturbances 
and how to protect refuge areas to accommodate future shifts (Bernhardt and Leslie 
2013). 

Management Options for Ocean Acidification 

The impacts of intensifying ocean acidification on individual species and entire 
communities challenge the objectives of MPAs. Many coastal communities are 
working to strategically change management plans to address ocean acidification and 
support ecosystem resilience. The West Coast Ocean Acidification and Hypoxia 
Science Panel has recommended strategies to coastal conservation planners and 
managers for MPAs, despite uncertainties about the impacts of OA in the California 
Current System. Recommendations include incorporating OA into MPA selection and 
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networks, updating management goals to promote ecological resistance, supporting 
the advancement of OA models, conserving habitat that sequesters carbon, and 
integrating OA into coastal management frameworks (Chan et al. 2016). 
 
Reduce CO2 Emissions 
The root cause of ocean acidification is the ocean’s absorption of CO2 caused by 
increased atmospheric CO2 due to anthropogenic emissions (Doney et al. 2009). 
Thus, to truly prevent future ocean acidification, CO2 emissions must decrease. Model 
projections demonstrate that if CO2 emissions increase at their current rate, the 
ocean’s acidity will increase by 100% or more by 2100 (Orr et al. 2005).  
 
CO2 emissions are mostly regulated by federal authorities; federal air quality 
managers have the most regulatory power to introduce policy to reduce greenhouse 
gas emissions. Air quality and marine managers should recognize the impacts of CO2 
emissions on marine environments and coastal communities as they assess climate 
change damages of CO2. Initiatives to reduce CO2 emissions include pricing carbon 
through cap-and-trade programs or taxes, setting emission standard for new motor 
vehicles, emissions reporting, or expanding renewable fuel targets (Boehm et al. 
2015). 
 
Blue Carbon 
Although some marine organisms are negatively impacted by OA, both calcifying and 
non-calcifying organisms have shown an increase in photosynthesis rates under 
increased CO2 conditions (Doney 2009). Acidification conditions are closely linked, 
spatially and temporally, with biotic processes, namely photosynthesis and 
respiration (Silbiger and Sorte 2018). Marine vegetation, such as seagrasses, salt 
marshes and mangroves, has been estimated to capture 70% of organic carbon in 
marine environments (Duarte et al. 2005). Using vegetation as a technique for 
sequestering carbon has been named “blue carbon.” Submerged aquatic vegetation 
(SAV) can take up carbon through photosynthesis, minimizing changes to pH within 
the surrounding habitat (Duarte et al. 2005). For this reason, blue carbon through 
SAV has become a large topic of research, especially in the California Current System.  
 
SAV ecosystems sequester carbon in a few different manners. They can sequester 
carbon with their underlying sediments, underground through their root structures, 
and within aboveground biomass of leaves, stems and branches. Sedimentary 
sequestration can store carbon for long timescales, sometimes millenia, while SAV 
biomass sequesters carbon for a shorter time period, usually a decennial scale 
(McLeod et al. 2011). Because mangroves, salt marshes, and seagrass meadows do 
not become saturated with carbon, sediments can accrete vertically as sea level rises; 
this means carbon sequestration capacity through ocean sediments may increase over 
time (McLeod et al. 2011). Beyond vertical accretion, SAV ecosystems are also able to 
trap sediment efficiently, from both ocean and river sources. This is referred to as 
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“laterally imported carbon.” Estimates of global carbon burial through sediment vary, 
but seagrasses have been estimated to bury 48-112 Tg of carbon per year, compared 
to salt marshes, estimated at 4.8-87.2 and mangroves, estimated to between 31.1-
34.1 Tg of carbon per year (McLeod et al. 2011). Threats to salt marshes, mangroves, 
and seagrass meadows may have serious impacts to current global carbon sinks 
(Waycott 2009). Recent studies estimate about 1/3 of these ecosystems have been 
lost in the past decades (McLeod et al. 2009). 
 
Although there is variability in estimates of seagrass’ ability to sequester carbon, most 
studies find the amount of sequestration to be relatively high; estimates of carbon 
storage vary between seagrass species and seasonal time scales (Macreadie et al. 
2014). Seagrass meadows have been estimated to bury carbon 35 times faster than 
many terrestrial forests (McLeod et al. 2011). Furthermore, they can bury large 
amounts of carbon while covering minimal space. Seagrass meadows occupy less 
than 0.2% of global ocean areas, however they account for approximately 10% of the 
carbon buried in oceans (Fourqurean et al. 2012). In a 2012 survey of seagrass 
carbon stocks, it was estimated seagrasses can store from 4.2-8.4 Pg of carbon, 
although developing carbon budgets for seagrasses is quite complex (Fourqurean et 
al. 2012). 
 
Since seagrasses are typically autotrophic, they can sequester carbon through biomass 
on seasonal timescales, and on longer timescales in below-ground sediment retention 
(Hendriks 2014). A few seagrass species have shown great potential to produce short-
term changes to carbonate chemistry through biomass sequestration, reducing local 
impacts of OA. One case study in Padilla Bay in Washington assessed the ability of 
Zostera marina, a native seagrass, and Zostera japonica, a non-native seagrass, to 
lessen ocean acidification. Both seagrasses are known to provide habitat for bivalves 
and other OA-impacted species in the Pacific Northwest and both are found in soft-
sediment habitats (Harrison 1982). Results of this lab experiment showed that Z. 
japonica could take up more TCO2 than Z. marina, highlighting the differences in 
carbon uptake between species (Miller 2017). 
 
Update Water Quality Criteria 
Outside of CO2 emissions, other anthropogenic inputs, such as land-based nutrient, 
sediment, and contaminant inputs, to waterways have the ability to alter the severity 
of OA (Breitburg et al. 2015). Updating water quality criteria through the Clean 
Water Act (CWA) may be an option for regulating OA in coastal waters, specifically 
permitting sources of pollution. The Clean Water Act (CWA) is intended to “restore 
and maintain the chemical, physical, and biological integrity of the Nation’s waters” 
(33 U.S.C. §1251 Section 101). The CWA uses water quality criteria to assess the 
conditions of bodies of water, which determines limits of discharge into respective 
waters. Changing OA parameters of the CWA is the first step water quality managers 
can stake to addressing OA; secondly, appropriate thresholds should be set (Boehm et 
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al. 2015). The CWA is a federal law, however state governments manage the 
regulation of this law. Section 303(d) specifically assesses whether a body of water is 
“impaired”, which may be used to regulate OA. Currently the CWA uses pH as a 
parameter to assess ocean acidification and impaired waters. States each have their 
individual 303(d) lists which list polluted waters that do not meet water quality 
standards and then prioritize and rank these waters to develop Total Maximum Daily 
Loads (TMDL) (US EPA 2010). 
 
The West Coast Ocean Acidification and Hypoxia Science Panel recommends 
including biologically relevant criteria, such as aragonite saturation state, to assess 
water quality. Current pH standards in California, Oregon, and Washington (Table 3) 
include static ranges and refer to “natural conditions” of pH, which can be difficult to 
define. By using aragonite saturation state as a parameter and establishing a better 
defined and measurable threshold, the CWA would be more effective in regulating 
OA (Boehm et al. 2015). It is imperative to ensure there is an adequate monitoring 
network to measure changes in ocean condition in regards to regulating the CWA. By 
advancing monitoring technology and networks, water quality managers can improve 
their understanding of historical conditions and how water quality is changing to 
better manage OA (Boehm et al. 2015).  
 
Table 3. US EPA water quality for pH levels for West Coast states (US EPA 2010). 

State Water Classification pH Standards 

California All water bodies No more than 0.2 units from that 
which occurs naturally. 

Oregon 

Marine waters Must fall between 7.0 - 8.5 

Estuarine waters Must fall between 6.5 - 8.5 

Washington 

Exceptional waters 
Between 7.0 - 8.5 with a human 
caused variation of less than 0.2 
units. 

Excellent or good waters 
Between 7.0 - 8.5 with a human 
caused variation of less than 0.5 
units. 

Fair waters 
Between 6.5 - 9.0 with a human-
caused variation of less than 0.5 
units. 
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Data Portals 

One critical component of managing for natural resources, particularly on a regional 
level, is information and data sharing. This aggregation is known as “big data” and 
tools such as online data portals present an opportunity to facilitate more widespread 
sharing of big data to maximize its usability and value for managers. The benefits of 
sharing data include the incorporation of the results of small research projects, which 
represent a large portion of scientific output, and the acceleration of the pace of 
science by increasing opportunities for collaboration (Hampton et al. 2013, Michener 
2015). However, technical improvements to data storage and support are necessary 
to realize the full potential of big data (Manyika et al. 2011, Chun et al. 2010). This 
is where the value of data portals is realized. 
 
Here, we examine the functionality of data portals through the lens of ocean 
planning. Common characteristics of data portals for marine planning include: ocean-
focused, map-based, and publicly accessible (Longley-Wood 2016). SeaPlan identifies 
several best practices for ocean-based data portals. Portal design should 
accommodate a wide range of users, enable data vetting and peer review, and 
integrate data with planning efforts. The data portal must also then be able to host 
and store data while ensuring that the data are functional and usable. User interface 
design is necessary to make the data user-friendly. Lastly, outreach and 
communications help keep users aware of updated data and tools (Longley-Wood 
2016). 
 
Marine spatial planning efforts have turned to the use of data portals to provide open 
access to a wide range of scientists and managers working within a region. This is 
stimulated by the National Ocean Policy, a 2010 executive order by President Obama 
which promotes coastal resilience, safety, and productivity through a collaborative 
regional framework (The White House 2015). The Implementation Plan for the 
National Ocean Policy provides freedom to regional, state, and local communities 
based on their specific needs in implementing new ocean and coastal planning 
initiatives. The West Coast Regional Planning Body was established through the 
National Ocean Policy and subsequently adopted the West Coast Ocean Data Portal to 
provide a platform for data access and sharing for scientists, managers, and 
policymakers on the West Coast. The West Coast Ocean Data Portal focuses on data 
connectivity for priority issues for the West Coast region, which includes ocean 
acidification impacts. Similar measures have been implemented in other marine 
planning regions. The Northeast Ocean Plan instigated the creation of a data portal 
for the Northeast to be used for policy and management decision-making. The 
Northeast Ocean Data Portal’s data integration has supported local and statewide 
planning initiatives, assessments for offshore aquaculture, and siting of monitoring 
equipment (Northeast Ocean Data 2018).  
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Dealing with OA Uncertainty 

OA science is still a developing field with many uncertainties, however the need for 
OA science to inform marine management decisions is urgent. This provides a unique 
opportunity to shape research objectives by management needs. The IPCC 2014 
report stated high confidence that OA will increase and impact marine ecosystems if 
CO2 emissions continue. Furthermore, it has characterized the effects of OA as “high 
impact---high uncertainty.”  Marine managers and policymakers are most concerned 
with how OA and changing ocean chemistry impact marine systems, and ultimately 
how it may harm humans, which is a difficult concern to address under uncertainty. 
Two types of uncertainty make estimating OA impacts difficult: reducible uncertainty 
that comes from lack of knowledge and research, and irreducible uncertainty that 
stems from the complexity of the ocean and its natural ecosystems (Busch et al. 
2015). Increased efforts in data monitoring and modeling are increasing certainty 
about how ocean chemistry is changing, but these uncertainties make predicting the 
exact spatial and temporal conditions of OA very difficult. Further uncertainties 
include future CO2 emissions and the ecological and socioeconomic impacts of OA.  
 
Despite uncertainty, communication about the threat of OA is vital to effectively 
expanding research to decrease uncertainty and to alert marine managers of potential 
impacts of OA. In communicating the threat of OA, it is important to report research 
with strong evidence, backed by long-term monitoring and strong data, though 
transparency about uncertainty is equally important (Busch et al. 2015). 
Communicating risks associated with OA is one way to acknowledge that no future 
impacts are entirely certain; instead, uncertainty can be part of the decision-making 
conversation. This means communicating OA risk through a wide range of impacts, 
even those with low probability. By presenting risks through ranges of likelihood of 
occurrences and consequences of each outcome, scientists can synthesize 
understanding across disciplines to better prepare marine managers for future 
decision making and planning (Busch et al. 2015). Uncertainties can be diverse in 
nature, especially within ecosystem-based management. 
 
Link et al. (2012) identify sources of uncertainty in the specific case of ecosystem-
based marine management: natural variability; observation error; inadequate 
communication among scientists, decision-makers, and stakeholders; the structural 
complexity of the model(s) used; outcome uncertainty; and unclear management 
objectives. Dealing with each of these uncertainty factors can be done in a unique 
way. 

● Natural Variability: probabilistic reasoning and adaptive management can 
mitigate natural variability. Probabilistic reasoning involves creating a 
distribution of outcomes with estimated occurrences, and adaptive 
management means developing management strategies that are relatively 
insensitive to natural variability.  
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● Observation Error: increased sampling intensity can mitigate observation 
error.  

● Structural Complexity: this can be addressed through the acknowledgement 
that several model alternatives are likely, and the use of model averaging as a 
way to address this. 

● Inadequate Communication: increased stakeholder participation can lessen 
this. 

● Unclear Management Objectives: the most significant way to improve this 
problem is to ensure that there is enough time for scoping, iterations, and 
discussions.  

● Outcome Uncertainty: improved monitoring can mitigate this problem. 
 
Communicating OA through the evaluation of the current state of knowledge can 
help inform stakeholders of what is known; this can be done through meta-analyses 
and literature reviews, for example. Using conceptual models can also help 
stakeholders understand the interdisciplinary nature of OA. Developing consistent 
terminology can help to communicate scientific understanding across disciplines, 
especially for policy-relevant science (Busch et al 2015).  
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Methods 
In order to analyze the way OA is monitored and evaluated at the regional level, our 
team completed a series of analyses: OA monitoring data exploration, an OA 
monitoring network gap analysis, an OA hotspot and thresholds analysis, and an MPA 
and habitat analysis. We also assessed the suitability of future OA models and 
summarized management options based on the results of our analyses. We began our 
analyses by exploring the various ocean acidification datasets accessible through the 
West Coast Ocean Acidification and Hypoxia (OAH) Monitoring Inventory (Appendix 
1). Doing so allowed us to analyze initial gaps within the monitoring system. Our 
monitoring network gap analysis created a spatial estimation of where high priority 
data gaps exist at the regional level. Our exploration of the inventory also allowed us 
to identify which datasets were appropriate to use in an aragonite saturation model 
to identify OA hotspots. In lieu of access to robust and formal OA model outputs, our 
hotspots and thresholds analysis created an aragonite saturation state model based 
on interpolation of monitoring data, from which we defined and identified hotspot 
thresholds on the West Coast. This analysis allowed us to determine which MPAs 
were of the highest risk and which habitats may be suitable for future management 
and restoration actions. Ultimately, our hotspot interpolation is a placeholder for 
more robust model outputs that could use our framework to identify changing 
locations of hotspots in the future and MPAs that may be at risk. Because of this, we 
also explored the suitability of existing OA models and models in development for a 
more robust hotspot and MPA analysis in the future. 
 
Throughout this entire analysis we focus and frame our work under the assumption 
that aragonite saturation state is the ideal monitoring parameter for addressing OA at 
the regional scale. It is the most appropriate metric to use when considering 
management implications for MPAs that protect biological resources that respond to 
changes in aragonite saturation state. 

Data Exploration and Wrangling 

Our team began our analysis of the distribution of ocean acidification and hotspots by 
using data to create a continuous prediction layer of ocean acidification trends across 
space. As mentioned above, several models (for aragonite saturation state or pH) 
exist or are currently in development, at varying temporal and spatial scales. Though 
model outputs may be the ideal data input to use for predicting patterns in OA in the 
future, these outputs were not available for use in our project. Thus, our team created 
an interpolated estimate of aragonite saturation state for the purposes of this project 
based on data accessible in the West Coast OAH Monitoring Inventory.  
 
We downloaded and explored publicly available data based on assets identified in the 
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West Coast OAH inventory. We evaluated datasets based on their spatial and 
temporal coverage, consistency, and carbonate completeness (i.e. ability to calculate 
aragonite saturation state from observed parameters). Aragonite saturation state was 
selected as the appropriate monitoring parameter for this analysis because it is 
recognized as the “gold standard” for modern ocean acidification monitoring and 
prediction; saturation state has been found to have the most effective predictive 
power for biological species response to OA conditions (McLaughlin et al. 2015, 
Waldbusser et al. 2015). Thus, the selection of aragonite saturation state for this 
analysis allows for a clear linkage between the physical oceanographic trends and the 
management evaluation tool we wanted to provide. 
 
When looking to explore how OA trends change within our study region, we selected 
several mooring buoy sites that calculate aragonite saturation state based on in situ 
carbonate parameter measurements. These datasets were used to perform sample 
time series analyses which examine daily and monthly averages and temporal trends. 
Values of aragonite saturation state were plotted for two sites: one in the Santa 
Barbara Channel and one from Hog Island Oyster Company in Tomales Bay. Based on 
correspondence with the researchers from Hog Island, we excluded data points with 
salinity values less than 15 from our analysis due to data quality concerns. Monthly, 
weekly, and daily values of aragonite saturation state were plotted for January, 
February, June, and July based on data availability and to compare seasonal 
differences in saturation state mean and variability. The mean value and difference of 
one standard deviation were plotted with the raw data to compare aragonite 
saturation state over different time scales (see Results and Appendix 2). 

Gap Analysis 

The gap analysis was completed using data from the West Coast OAH Monitoring 
Inventory, a list of monitoring assets. Monitoring assets include survey areas, cruise 
stations, gliders, sample sites, shoreside sensors, and moorings. This inventory is an 
ongoing project led by the Interagency Working Group on Ocean Acidification and 
the Pacific Coast Collaborative and includes information on ocean acidification 
parameters collected, the frequency and duration of collection, and the monitoring 
locations. Ocean acidification parameters collected include pCO2 of surface water, 
pCO2 of air, pH, DIC (dissolved inorganic carbon), TA (total alkalinity), carbonate 
ion, and DO (dissolved oxygen). Of special note are monitoring locations which are 
“carbonate complete”, meaning the asset collects two of the parameters needed to 
determine aragonite saturation state: pH, TA, DIC, and pCO2. Managers along the 
West Coast are interested in quantitatively assessing gaps in this monitoring network. 
It is important to incorporate both geographic distance into this gap analysis, as well 
as variability in oceanographic conditions (Halpern, personal communication, 2017). 
The following analysis was completed using R (Version 3.4.3) and utilizes these 
parameters to locate where the existing West Coast ocean acidification monitoring 
network could be improved in the future (Appendix 3).  
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Data Exploration 
The most recent version of the West Coast OAH Inventory was shared as a csv file by 
the partners at Oregon Department of Fish and Wildlife and the California Ocean 
Protection Council, both members of the Pacific Coast Collaborative OA Task Force. 
From this inventory, we reviewed the Field and Classification descriptions document 
to familiarize ourselves with each field and possible range of entry values. We 
examined each field (column) and determined that the following fields were relevant 
to our analyses: temporal frequency, carbonate completeness, and latitude and 
longitude. We noted that the significant digits of the latitude and longitude vary 
greatly, which affects the spatial resolution of monitoring sites. We acknowledge this 
as a limitation of the dataset, since coordinates were provided by researchers or 
directly from their data sources, and we left the coordinates as is. We noted a few 
gaps in latitude and longitude data and found that these are for either gliders or 
cruise stations. 
	
Creating an Ocean Variability Raster 
Sea surface temperature and dissolved oxygen have been identified as the strongest 
correlates of aragonite saturation (Juranek et al. 2009). Thus, in order to identify 
places in the ocean where aragonite saturation state is changing on a spatial scale or 
on a temporal scale, changes in these variables can be used as a proxy as they are 
much more commonly measured (and even measured through satellite imagery) than 
aragonite saturation.  
 
We acquired mean and range rasters for sea surface temperature and dissolved 
oxygen to serve as ocean dissimilarity layers. The rasters are from the Bio-ORACLE 
global dataset and represent monthly averages over a 15-year period, 2000-2014 
(Appendix 4) (Assis et al. 2017). Rasters were loaded into R (Version 3.4.3) using the 
‘smdpredictors’ package (Assis et al. 2017), projected to North American Datum 83 
California Teale Albers, and cropped to our study region, identified by the bounding 
box of NAD 83 coordinates (-670000, 340000, -650000, 1210000). We used voronoi 
polygons to divide the ocean into regions based on spatial proximity to each 
monitoring asset. We assigned a polygon ID to each polygon and rasterized the 
voronoi polygons by gridding the study region and the polygon ID associated with 
each individual cell. For each dissimilarity layer (sea surface temperature mean, sea 
surface temperature range, dissolved oxygen mean, dissolved oxygen range), we 
assigned the parameter value of all raster cells with the same polygon ID to the 
measured value of the cell containing the monitoring asset associated with that same 
polygon ID. We determined the oceanographic difference of each cell as compared to 
the cell containing the nearest monitoring asset with the following formulas: 
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Euclidean distance is a well-established method of combining variables and allows 
this analysis to combine sea surface temperature mean, sea surface temperature 
range, dissolved oxygen mean and dissolved oxygen range into a single 
“oceanographic difference” layer (Appendix 5). 
 
In the future, when aragonite saturation state models are available on a regional 
scale, this oceanographic variability layer could be replaced with outputs from a 
model. The employment of Euclidean distance would still be relevant, but instead of 
using means and ranges of sea surface temperature and dissolved oxygen to create 
spatial and temporal dissimilarity, the difference in mean aragonite saturation would 
replace the spatial dissimilarity equation, and the difference in mean (or ideally the 
difference in standard deviation) of aragonite saturation would replace the temporal 
dissimilarity equation. 
 
Performing the Gap Analysis in R 
We observed discrepancies in the measurement frequency entries and standardized 
this column by converting frequency of measurement to a number representing the 
amount of measurements collected in one year. We created a new column for this 
conversion in the original inventory in R.  
 
The variability raster was used in combination with the distance from each cell to its 
nearest monitoring asset with the formula: 
 

 
 

Once again, Euclidean distance is a well-established method of combining variables, 
and allows this analysis to combine oceanographic dissimilarity and geographic 
distance into a single “gap” layer. 
 
We repeated this analysis with subsets of the inventory to examine different types of 
gaps. Gaps based on temporal frequency were examined by subsetting the inventory 
for assets where measurements are collected at least once per day. Carbonate 
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complete gaps were analyzed by subsetting the inventory according to assets that 
collect data for a minimum of 2 of the carbonate complete parameters.  
 
In order to effectively visualize the gaps in West Coast ocean acidification monitoring, 
the results from this analysis were separated by a ranking system based on 
percentiles. The top 0.1% of cell values were ranked as severe gaps, the top 1% of 
cell values were high priority gaps, the top 25% were low priority gaps, and the rest 
of the cell values were identified as adequately monitored.  
 
Choosing Weights and a Sensitivity Analysis 
In determining the weighting factors in this analysis, we decided to weight temporal 
dissimilarity over spatial dissimilarity. Weighting the ranges (temporal dissimilarity) 
rather than the means (spatial dissimilarity) allows the model to capture and 
emphasize the extreme values of sea surface temperature and dissolved oxygen. 
Ocean acidification is highly variable and in order to understand the biological 
impacts, it is necessary to consider these extremes. We decided to weight dissimilarity 
over distance because the dissimilarity raster was normalized while the distance 
raster was not normalized. We chose not to normalize the distance raster because we 
want the distances in all three analyses to be based off the initial, raw values. Thus, 
by weighting dissimilarity on an order that allows normalized dissimilarity to be 
comparable to distance in meters, we create a balance between these two 
components of the analysis.  
 
A sensitivity analysis was performed on the weighting factors used in the gap 
analysis. This sensitivity analysis was done by running the gap analysis with ten 
different values for each weighting factor. These weighting factors ranged from 10-5 
to 10-14 for the distance weight and from 2 to 20 for the temporal weight. These 
combinations were used to create 100 different raster layers representing the top 
0.1%, 1% and 25% of gap values. The sum of these values was calculated to 
determine where the generated outputs of gap predictions overlapped over all 100 
combinations of weighting values. 

Hotspot Interpolation and Thresholds Analysis 

Hotspot Interpolation 
After extensively exploring the inventory, cruise datasets from the NOAA Ocean 
Acidification Program were selected for use in a spatial interpolation analysis due to 
their region-wide spatial coverage. We used point observations from four cruises that 
took place in 2007, 2011, 2012, 2013, each with different spatial extents and cruise 
stations along the West Coast (Appendix 6). This series of cruises provides the most 
spatially comprehensive and precise measurements of ocean carbonate system 
metrics within the region (Feely and Sabine 2011, Feely et al. 2014 a, Feely et al. 
2014b, Feely et al. 2015). 
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For each cruise, surface observations were selected by excluding measurements with 
a pressure greater than or equal to 5 db. Surface observations of total alkalinity (TA) 
and pH from each cruise station were input into the program CO2SYS Version 25b, 
(Lewis and Wallace 1998), which estimates aragonite saturation state based on other 
measured values within the carbonate system. To calculate aragonite saturation state 
values, we used carbonate system parameters (TA and pH) and four carbonate 
constants appropriate to the Eastern Pacific as inputs into CO2SYS (Table 4). 
 
Table 4. The sources for parameter constants used as inputs for CO2SYS Version 25b 
(Lewis and Wallace 1998), which is used to calculate aragonite saturation state 
values. 

Parameter Source 

Carbonate Lueker et al. 2000 

KSO4 Dickson 1990 

Total Boron Lee et al. 2010 

Pressure Effect Mucci 1983 
 
Ordinary kriging, based on discrete point data, was performed in R (Version 3.4.3) to 
create a continuous spatial interpolation of aragonite saturation state in the 
California Current System (Appendix 7). As a part of the kriging calculations, 
directional variograms were created for each cruise to determine how aragonite 
saturation varies with distance and direction. A Gaussian model type was used to fit 
the variogram to point observations and determine the nugget, sill and range of each 
cruise’s points and their predictive extent based on their spatial dependence or 
correlation. 
 
The variogram showed that in the east-west direction, aragonite saturation varies 
with distance four times faster than in the north-south direction. To account for this 
difference, anisotropy was incorporated into the exponential model. The extent of the 
interpolation was set to include the entire area of the cruise as well as one degree of 
latitude and longitude beyond the furthest cruise station in each direction (see details 
of each cruise in Appendix 6). The grid was determined such that latitudinal and 
longitudinal grid dimensions were equal, each grid box being 0.16 degrees tall and 
0.16 degrees wide.  
 
Because of the different physical forces and conditions in estuaries, we were not able 
to assume that our spatial interpolation of aragonite saturation state could be 
extended into estuarine areas. A shapefile of estuaries on the West Coast was 
obtained from the Pacific States Marine Fisheries Commission and used to mask 
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aragonite saturation state values in these areas (TerraLogic GIS, Inc 2005). This 
interpolation was duplicated for each set NOAA OA cruise observation points (see 
Results and Appendix 8). 
 
Hotspot Thresholds Analysis 
For the purpose of this analysis, we defined ocean acidification hotspots as areas 
where surface waters meet critical thresholds of aragonite saturation state. When 
aragonite saturation is <1, water is chemically undersaturated, meaning that the 
formation of shells by calcifying organisms is not energetically favored and can cause 
organisms to enter a state of dissolution. However, many calcifying organisms have 
shown detrimental effect of OA at aragonite saturation states under 2 (McLaughlin et 
al. 2015). Additionally, there have been recorded incidents of die-off and shell 
dissolution tipping points at hatcheries along the West Coast at a saturation state of 
1.7 (Barton et al. 2012, Chan et al. 2017). These thresholds were used to repeat the 
analysis with each year and dataset of the NOAA OA cruises (see Results and 
Appendix 9). 
 
MPA Analysis 
The MPA analysis aims to develop a framework for considering impacts that OA 
hotspots may have on MPAs using various types of spatial analysis. Shapefiles for 
selected marine managed areas from Washington, Oregon, and California were 
obtained from the Anthropocene Institute’s (2016) MPA Database (Appendix 10). 
These included all state reserves, conservation areas, and marine parks as well as 
federal National Marine Sanctuaries.  
 
Because the goal of this project was to provide evaluation metrics for marine 
protected areas that were actively managed and established for long term ecosystem 
protections, the larger Anthropocene Institute database was subsetted for the 
purposes of this analysis. The database contains all marine managed areas - including 
vessel speed reduction management areas, water quality testing areas, catch 
reporting units, and seasonal and temporary closures as well. Within this large 
variety of management areas, seasonal protections, temporary closures, as well as 
single-species protection listings such as Essential Fish Habitats were excluded.  This 
was due to their management framework’s lack of relevance to the potential OA 
evaluation criteria and management options. Short term closures do not operate on 
the timeframe necessary for OA mitigation and management and the spatial area of 
Essential Fish Habitats are not actively managed or directed toward a species that is 
impacted by OA levels. 
 
Next, each MPA’s exposure to OA hotspots was evaluated in two ways: the mean 
aragonite saturation state across the spatial extent of the MPA, and the percent of the 
MPA covered by a hotspot (based on the 2.0 aragonite saturation state threshold). 
MPAs were ranked in order of lowest mean aragonite saturation state to highest. This 
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analysis was repeated with each of the four NOAA OA Cruises (see Results and 
Appendix 11).  

Model Suitability Analysis 

To better understand the current state of OA modeling on the West Coast, a list of 
existing and underway models was compiled. Information sheets were developed to 
keep track of the goals, components, and resolution for each model (Appendix 12). 
Where available, online model simulations were observed. Contact was made through 
phone calls and emails with the modelers and their partner organizations to build a 
comprehensive list of characteristics for each model. Primary literature was also 
referenced. The characterization of each model included: 

● Goals 
● Sponsor institution 
● Extent 
● Domain 
● Resolution and temporal scale 
● Model forcing 
● Validation 
● Data access and availability 
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Results	
Data Exploration and Wrangling	

After downloading numerous datasets listed in the West Coast OAH Monitoring 
Inventory and contacting researchers and data managers to inquire about data access, 
we found that nearly all of the several hundred monitoring asset inventories were 
nullified or unusable for analysis due to the conditions of our evaluation. We did 
identify monitoring assets with available continuous aragonite saturation state data, 
however the data did not coincide temporally, and the spatial coverage was sparse. 
Thus, it was not feasible to use continuous data for a spatial interpolation of 
aragonite saturation state hotspots. This demonstrated some fundamental gaps in the 
accessibility and usefulness of the inventory catalog, explored in further detail in the 
Discussion section below. 
 
Even though we could not use this continuous data to generate a map of hotspots, we 
plotted the data and calculated simple summary statistics (mean and standard 
deviation) to get a sense of aragonite saturation state observations within two sites of 
our study areas: an LTER site in the Santa Barbara Channel, CA and Hog Island in 
Tomales Bay, CA (Figure 1, Figure 2, Appendix 2).  

 
 
Figure 1. Time series of aragonite saturation state at Alegria Reef (ALE) in the Santa 
Barbara Channel for June 2011 - January 2014. Blue line represents the mean (2.32), 
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grey bar represents 1 standard deviation (0.36) above and below the mean. Data 
provided by Santa Barbara Coastal Long Term Ecological Research. 
 
	

	
	
Figure 2. Time series of mean daily aragonite saturation state at Hog Island Oyster 
Company in Tomales Bay, CA in 2015. Blue line represents the mean (1.88), grey bar 
represents 1 standard deviation (0.44) above and below the mean. Data provided by 
Hog Island Oyster Company and managed by UC Davis Bodega Marine Laboratory. 

Gap Analysis 

The results of the gap analysis revealed severe gaps (top 0.1%) off the coast of 
Florence, Oregon. High priority gaps (top 1%) exist at the mouth of the Columbia 
River, off the coast of Tillamook, Oregon, around the Olympic Peninsula, around 
Cape Blanco, and at the California-Oregon Border (Figure 3). 
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Figure 3. Results from a gap analysis of all ocean acidification-related monitoring.  

 
The analysis of gaps in carbonate complete monitoring reveals another severe gap off 
the coast of Florence, Oregon. High priority gaps also exist along the Northern 
Oregon coast and around the Olympic Peninsula, as well as off Cape Blanco and the 
California-Oregon Border (Figure 4). 
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Figure 4. Results from a gap analysis of carbonate complete ocean acidification 
monitoring. 
 
The analysis of gaps in daily monitoring reveal severe gaps offshore from Cape 
Lookout in Oregon, as well as in the Southern half of Puget sound in the San Juan 
Islands. High priority data gaps also exist at the Columbia River mouth, Cape Blanco, 
Port Angeles, and at the California-Oregon Border (Figure 5).  
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Figure 5. Results from a gap analysis of monitoring with a frequency of at least once 
a day.  
 
The primary result from this section of the project is a finalized and polished function 
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that is publicly accessible through GitHub in R. This product is still in progress, but 
will be complete in the coming weeks.  
 
The results of the sensitivity analysis on the weighting factors used in the gap analysis 
on the full inventory reveal that between 100 different combination of weights 
ranging from 10-5 to 10-14 for the distance weight and 2 to 20 for the temporal weight, 
the top 0.1% and the top 1% of the gap values were completely insensitive. Under 
this range the top 25% of gap values were 8.4% sensitive (calculations available in 
Appendix 3).  

Hotspot Interpolation and Thresholds Analysis 

The results of our ordinary anisotropic kriging created a continuous layer of aragonite 
saturation state predictions across our study region, revealing areas of both under-
saturation and supersaturation along the coast. Expectedly, our prediction is 
strongest when cruise observation points are closely clustered together. The standard 
error associated with our kriging predictions increases at an increasing rate as spatial 
dependence amongst predictions decreases away from the center of the observation 
point (Figure 6). Noticeably, there are areas in the southern region of our study in 
which observation points are almost too far apart to generate a reasonable prediction, 
at the limit of our observation points’ spatial correlation. 
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Figure 6. Raw kriging prediction outputs and standard error of predictions for 
aragonite saturation state based off of surface level observations in the 2013 NOAA 
OA Cruise (Feely et al. 2013). See outputs for each cruise in Appendix 8. 
 
These raw interpolation predictions allow us to identify where OA hotspots may be 
occurring at distinct snapshots in time based on data from the NOAA West Coast 
Ocean Acidification cruises (2007, 2011, 2012, 2013). Data from the 2013 cruise 
shows hotspots that fall below the 2.0, 1.7, and 1.0 aragonite saturation state 
thresholds at the mouth of the Columbia River and off Cape Mendocino, while “cold 
spots” appear outside of San Francisco Bay and the coast Washington (Figure 7, 
Figure 8). Each cruise revealed different hotspots and relative “cold spots” that varied 
in both size and location over output. This variation could be due to annual 
variability of saturation state, but also could be an artifact of the different sampling 
locations used on each cruise (Appendix 6).  
	



 42 

			 	
	
Figure 7. The map on the left shows the interpolated aragonite saturation state 
values for the West Coast produced using data from the 2013 NOAA West Coast 
Ocean Acidification Cruise. The map on the right shows hotspots of ocean 
acidification, defined as areas where aragonite saturation is below a biologically 
significant threshold of 2.0. Areas with aragonite saturation below 1.7 or 1.0 are also 
visualized. (Also see Appendix 9). 
	

	 	
Figure 8. These maps display the two hotspots identified by by our analysis of the 
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2013 NOAA West Coast Ocean Acidification Cruise. The first hotspot shown on the 
left is located near the mouth of the Columbia River; the second hotspot is located 
near Cape Mendocino.  
 
Due to the wide spatial extent of the cruise stations, the predictive capacity of our 
kriging outputs decreases at a relatively fast rate north to south away from each 
point. However, despite using different prediction methods, we found that our results 
were similar to results previously published by Dr. Richard Feely who created similar 
continuous predictions from each cruise (Appendix 13). 

MPA and Habitat Analysis 

We used the interpolation of aragonite saturation values from the 2013 NOAA West 
Coast Ocean Acidification Cruise and resulting hotspots of ocean acidification to 
evaluate the risk imposed to marine protected areas on the West Coast (Figure 9). 
Threat to marine protected areas was evaluated based on the mean saturation state 
in the geographic extent of the MPA and the percent of the MPA covered by a hotspot 
zone (Figures 9, 10 and Table 5).  
	
The ten marine protected areas with the lowest mean aragonite saturation state were 
found in Oregon (Table 5). 
 
The results for our MPA analysis also includes the percent of each MPA covered by 
one of three essential fish habitat types: kelp, seagrass, or rocky reefs. Figure 10 
displays the percent coverage for each MPA.  
 
The process of this analysis is systemized in a completed R code that is publicly 
accessible through GitHub. This analysis can be customized not only by the aragonite 
saturation state input used, but also by the relevant hotspots that may pertain to 
certain ecosystems and species of concern. With this in mind, we analyzed the 
suitability of various existing OA models to inform this type of MPA analysis.  
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Figure 9. Marine protected areas on the West Coast where infill color represents the 
mean aragonite saturation state within the geographical extent of the MPA. The map 
on the right displays the percent of each MPA’s area covered by an ocean acidification 
hotspot.  
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Table 5. The ten marine protected areas with the lowest mean aragonite saturation 
state. The list shows MPAs in the California Current system where MPAs co-occur 
with ocean acidification hotspots, determined by critical thresholds of aragonite 
saturation state. MPAs are ranked by the lowest aragonite saturation state. Across all 
three West Coast states, 21 MPAs were 100% covered by an ocean acidification 
hotspot. 
 

Marine Protected Area Mean Aragonite 
Saturation State 

Area of MPA (km2) 

Haystack Rock Marine 
Garden, OR 

1.04 0.34 

Cape Falcon Shoreside Marine 
Protected Area, OR 

1.11 0.61 

Cape Falcon Marine Reserve, 
OR 

1.15 32.04 

Saltwater Salmon Angling 
Closure - Columbia River, OR 

1.20 15.97 

Cape Falcon West Marine 
Protected Area, OR 

1.21 19.10 

Cape Meares National 
Wildlife Refuge, OR 

1.28 0.62 

Netarts Bay Shellfish 
Preserve, OR 

1.33 1.41 

Columbia River Salmon 
Conservation Zone, OR 

1.50 47.48 

Cascade Head North Marine 
Protected Area, OR 

1.54 31.55 

Cascade Head Marine 
Reserve, OR 

1.56 25.09 
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Figure 10. The number of marine protected areas by state (Washington, Oregon and 
California) that have a certain area covered by an ocean acidification hotspot 
(defined earlier in our analysis as having an aragonite saturation state below 2).    

Model Suitability Analysis 

Here, we analyze the three OA models for the California Current System to compare 
their spatial extents, temporal scales, forecasting abilities, and limitations, in order to 
summarize how to best use these models. Furthermore, we can assess how to 
improve models moving forward. 
 
Temporal scales 
Aragonite saturation states can vary widely on daily, seasonal, and annual scales. For 
this reason, using a variety of OA models to predict variability in aragonite saturation 
state is necessary for understanding management concerns. The J-SCOPE model, for 
example, biannually forecasts OA parameters 6-9 months in the future, whereas the 
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LiveOcean model provides outputs for OA parameters every 1.5 hours and can show 
3-day hindcasts and forecasts. This may be especially useful for shellfish farmers to 
understand and plan for upcoming growing seasons. It also identifies “short-term” OA 
hotspots that may occur in the near future. The ROMS-BEC model will forecast OA 
conditions 5-10 years in the future in areas of low-resolution (1 km resolution), and 
forecast a few months in the future for high-resolution grids (<300 m). Annual 
predictions will help inform long-term OA hotspots where managers may expect long-
term changes to aragonite saturation state. Ideally, models will continue to expand 
their temporal extents to include more certain predictions of daily, seasonal, annual, 
and long-term predictions years into the future. 
 
Spatial Extent 
The J-SCOPE and LiveOcean models visualize the same spatial extent from 43°N to 
50°N including Puget Sound, whereas the ROMS-BEC model ranges from British 
Columbia, Canada to Baja, Mexico. The resolution of OA models has previously been 
a large limitation in understanding the current state of OA in the California Current 
due to the variability in nearshore environments. The ROMS-BEC model will be the 
first model to predict high-resolution conditions in nearshore environments, in some 
areas at less than 300-meter resolution. The ROMS model, however, varies in spatial 
resolution by region, using nested models. The model provides 1 km resolution data 
for a distance of 500 km area offshore of Washington, Oregon and California. A 300 
m resolution model covers the Southern California bight, and a 100 m resolution 
model includes the Channel Islands and the greater Los Angeles region. The entire 
California Current System is predicted at a 4 km resolution. The J-SCOPE and 
LiveOcean models have a resolution of 1.5 km on the coast and 4.5 km in offshore 
environments. Fine resolution in highly variable areas is important to understand and 
predict biological impacts. As we begin to learn more about species response to OA, 
we want to understand how OA variability impacts the resiliency of OA vulnerable 
species. For example, the impact of high variability of aragonite saturation state on a 
diurnal scale in a small tidal area may differ from the impact of changes in aragonite 
saturation state that is widespread in area and occurs over long temporal scales. 
Similarly, some marine organism may be more or less resilient to acute versus chronic 
OA stress. We can only measure this variability with fine resolution models. Fine 
resolution models will also inform MPA managers of aragonite saturation state values 
and variability within an MPA. 
 
The above models and their forecasting abilities of aragonite saturation state in the 
California Current System provide insight into future abiotic conditions. By coupling 
these models with ecological and human system models, the ecological and social 
impacts may be better understood (Busch et al. 2015). The coupling of models may 
be the most effective way to communicate knowledge from OA researchers to 
motivate policy changes (Boehm et al. 2015). 
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Discussion  
Data Wrangling and Exploration 

Though not an expected formal component of our analysis, we found interesting 
trends in the monitoring inventory when attempting to collect publicly available OA 
data. The West Coast OAH Monitoring Inventory contains the full listing of 
monitoring assets and, when available, links to online resources that can be used to 
access the data holdings. The purpose of the inventory is to build a collective 
knowledge about the state of ocean acidification and to inform West Coast managers 
about what is needed to build a more comprehensive monitoring network moving 
forward. Thus, the success of the inventory relies on the ability of collaborators to 
integrate the data being collected by assets in the inventory.  
 
However, in our exploration of the inventory’s assets and their consistency, we found 
several aspects of the inventory that may inhibit its usefulness in the future. Although 
many of the monitoring assets have an associated website and person of contact to 
facilitate obtaining this data, the data itself it not publicly available. When we 
reached out to the listed contacts to ask for the data listed in the inventory, we had 
limited success. If future researchers and managers are not able to easily obtain the 
data listed in the inventory, this limits its contribution to understanding ocean 
acidification on the regional scale. Additionally, we found that there is a lack in 
temporal overlap in data collection, making the comparison between datasets 
difficult. Many monitoring resources do not have consistent monitoring during the 
time frame that they have listed in the inventory, so finding data from the same time 
intervals that can be used to compare different spatial areas is rare. Large 
inconsistencies in how long each asset has been collecting monitoring data make it 
difficult to find time-series data from various locations that can be compared. More 
inconsistencies exist between the inventory’s report of the types of data a monitoring 
asset is collecting and the availability of access to that data. Lastly, we found that 
many assets are not collecting carbonate complete data as stated, or they are 
collecting carbonate complete data, but for a shorter time span than described in the 
inventory.  

Gap Analysis 

It must be noted that the categorical severity of data gaps for each subset of this 
analysis are based off percentiles of that specific subset. This gives the appearance 
that carbonate complete monitoring and high frequency monitoring have no more 
data gaps than does the entire inventory. We considered creating categorical 
severities for the subsets based off percentiles of the whole, which would show that 
these subsets of the inventory have more gaps than the inventory as a whole. This, 
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however, should be naturally inferred because the analysis is inherently being 
performed on fewer data points with each subset. We thought that using categorical 
severity based off subset percentiles creates a more actionable and relevant outcome; 
in order to fill gaps in high frequency data collection, managers need to know where 
the highest priority gap is in high frequency data collection may be, rather than 
where gaps in high frequency data collection exceed some set value relative to the 
inventory as a whole.  
 
A major conclusion from the gap analysis is the importance of an international effort 
to conduct an inventory of monitoring assets throughout Canada, the United States, 
and Mexico. International borders are irrelevant to marine chemistry, revealing the 
need for international cooperation to better understand and monitor changing ocean 
chemistry.  
 
Assuming that all existing monitoring assets are currently included within the 
inventory, results from the gap analysis reveal several possible actions that can be 
taken to fill priority areas for additional monitoring. To decrease data gaps, 
additional monitoring infrastructure can be established off the coast of Central 
Oregon, which has the highest oceanographic difference, or variability, of any 
location on the West Coast. This makes the Central Oregon Coast a priority area for 
additional monitoring infrastructure. It is recommended that any additional 
monitoring in that region should collect data at daily frequency or greater, and 
should collect carbonate complete data. High frequency data collection in this region 
will provide information on short-term changes, such as within diurnal or tidal cycles 
(McLaughlin et al. 2015). Understanding diurnal and seasonal patterns can better 
help managers and fisheries predict future impacts of OA on biological activity. As the 
shellfish industry prepares for OA, understanding the variability of the carbonate 
system can serve useful in planning for OA, for example, through developing water 
treatment systems that have mitigation potential (Barton et al. 2015).  Additional 
monitoring infrastructure is also recommended at Cape Blanco, offshore from the 
Columbia River Mouth, at the California Oregon Border, and around the Olympic 
Peninsula. These locations repeatedly appear as the top 1% of gap values. By simply 
adding additional instrumentation to existing infrastructure at monitoring sites off 
the Oregon Coast, locations that currently only collect pH or pCO2 can become 
carbonate complete monitoring assets. An ideal monitoring network will contain 
carbonate-complete monitoring assets to allow users to calculate aragonite saturation 
state from the data collected at each asset. Researchers have prioritized using 
aragonite saturation state to represent ocean acidification over other measurements, 
such as pH. Adding high temporal frequency instruments to the existing 
infrastructure off Cape Lookout on the central Oregon Coast, and in the San Juan 
Islands in Washington can close severe data gaps. 
 
Several factors limit our analysis. The existing monitoring inventory does not include 
information about the depths of data collection. Seawater in the California Current is 
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most undersaturated at depth, making it important to monitor at a variety of depths 
in addition to the surface. Currently, there are significant gaps in assets that are 
monitoring at depth, but this analysis does not reflect these gaps due to data 
limitations. Additionally, this analysis does not address potential monitoring gaps in 
areas with specific management implications, such as marine protected areas or 
essential fish habitat. Managers have indicated the importance of having monitoring 
in and outside of these managed areas.  
 
Assumptions made about oceanographic variability affect the sensitivity of our 
analysis. The backbone for this analysis is the Bio-ORACLE oceanographic parameter 
raster layers. Other oceanographic parameter rasters are available, but we chose to 
use Bio-ORACLE because it works well with our goal of developing a package in R. 
Our results are dependent on the raster layers we used, and it could be valuable to 
repeat these analyses with alternative underlying oceanographic parameter rasters. 
This analysis assumes that ocean acidification and its variability can be predicted by 
sea surface temperature and dissolved oxygen (Lee et al. 2006, Juranek et al. 2009, 
Alin et al. 2012). If other parameters are identified as equally or more relevant to 
ocean acidification, this analysis could be repeated to include additional 
oceanographic parameters. In the future, depth and essential fish habitat should be 
included in this analysis and the monitoring inventory should be expanded to include 
Canada and Mexico. 

Hotspot Interpolation and Thresholds Analysis 

Our analysis of where hotspots of ocean acidification occur on the West Coast is 
limited in the sense that it is based on a “snapshot” view of ocean acidification 
conditions. By using the NOAA West Coast Ocean Acidification cruises, our analysis 
output layer is discrete in time and space. The layers showing hotspots created by 
these cruise outputs give us an idea of how we might begin to think about aragonite 
saturation state relative to MPA location, though the resolution of the information 
these data are giving us may not be refined enough to influence management 
decisions as it currently stands.  
 
However, based on our understanding of the research and trends on OA within the 
California Current System and based on the choice of a conservative interpolation 
method that suits our data, we are confident that the major hotspot we identify is 
chronic in the region. The Columbia River estuary shows chronic undersaturation in 
various model predictions and is highly influenced by nutrient loading from runoff. 
Additionally, all cruises occur during summer months, relatively central within the 
general upwelling season which begins in early spring and extends into late summer 
(Feely et al. 2008, Hauri et al. 2013). This suggests that the trends displayed by the 
cruise outputs may be reflective of the most severe or important trends in OA 
hotspots.  
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Because OA trends are so variable - changing within seasons, in response to acute 
forcings, and increasing largely over climatological time - an ideal spatial prediction 
for this type of analysis would be malleable to changing conditions and temporally 
robust (see Model Suitability Analysis below). We defined hotspots of ocean 
acidification as areas where aragonite saturation state fell below a threshold where 
biologically significant impacts begin to occur. However, additional criteria may be 
needed to define hotspots, such as the persistence of low aragonite saturation values 
over time.  

MPA and Habitat Analysis 

The objective of this analysis is to consider how a spatially fluid and dynamic 
problem like OA can be accounted for and incorporated into spatially explicit 
management zones like marine protected areas. Although the goals of each marine 
protected area may differ, their management generally focuses on an ecosystem-
based approach and provides an accessible way to approach controlling for ocean 
acidification on a local, spatial scale. However, time and other resources are limited, 
so it may not be feasible to address ocean acidification in every marine protected area 
on the West Coast. Our spatial analysis evaluated which marine protected areas were 
most at risk based on the values of aragonite saturation produced by our spatial 
interpolation from the 2013 NOAA West Coast Ocean Acidification Cruise. Therefore, 
our analysis of which marine protected areas are most at-risk is limited by the 
aragonite saturation data available. In the future, this same methodology can be used 
with other datasets of aragonite saturation produced from ocean acidification models.  
 
Once MPAs have been identified as threatened based on their average aragonite 
saturation state and amount of area covered by a hotspot, it is also important to 
consider what ecosystem type is found in the MPA. Considering the ecosystem type or 
habitat protected by MPAs can help identify areas where crucial species are found 
that are most vulnerable to MPAs. The management options described below describe 
different methods being developed to increase local ecosystem resilience to ocean 
acidification.  

Model Suitability Analysis 

Suitability of the ocean acidification models was analyzed based on their capacity to 
provide high-resolution information for MPA planning and management 
considerations. Models that are acceptable for MPA planning should have fine-scale 
resolution for small managed areas, capture seasonal variation, and make strong 
predictions with low uncertainty in nearshore areas, where biodiversity concerns are 
high and MPAs are most likely to be sited. 
 
LiveOcean is currently the highest spatial resolution model and most appropriate for 
assessing impacts to MPAs on a spatial scale. Improved resolution for this model to a 
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500 m scale will improve its utility for protected area planning. However, this model 
is spatially-limited in the context of our study area. Another limitation of using this 
model for MPA decision-making is the short-term predictions considering policies for 
MPAs are often developed and implemented on the timescale of months to years. 
MPA managers will likely benefit from models that can make long-term predictions. 
J-SCOPE is equipped to make these types of predictions; however, the spatial 
resolution is coarser which limits the certainty of predictions at the scale of MPAs. 
The ROMS-BEC model is a work in progress and is slated for release in 2019. This 
model presents fine-scale resolution for coastal waters in southern California, which 
will be more useful for management of southern California MPAs. 
 
There is a large gap in the spatial extent of these three acidification models. These 
models do not currently resolve acidification parameters for nearshore and offshore 
waters along the central and northern California coastlines or southern Oregon. 
Improved spatial extent of modeling and higher resolution will improve 
understanding of specific acidification threats at the scale of MPAs. In turn, this will 
provide more options for managers and policymakers to make decisions at the local 
scale, where decision-making is relatively simple compared to changing state or 
region-wide policies. The utility of these models will be further improved if they can 
be integrated with ecological models to improve understanding of abiotic and biotic 
coupling. 

Management Options 

Our discussion identifies feasibility of management options and outlines the barriers 
to implementing various techniques. These may include financial or technological 
barriers. We will discuss the degree to which each is being pursued or implemented.  
 
Expand West Coast OA Monitoring Network 
The gap analysis of the West Coast OA Monitoring network aims to identify 
opportunities to improve current data monitoring. Reducing gaps in spatial and 
temporal understanding of OA is integral for prioritizing areas of concern due to the 
high variability of OA. This will allow for more efficient use of management 
resources. The gap analysis can inform improvements to the existing network to 
provide more congruent and cohesive OA baseline monitoring and ensure adequate 
distribution of carbonate complete datasets.  
 
The gap analysis ranks high to low priority data gaps.  High priority gaps 
demonstrate areas where a lot of valuable information can be gained by updating or 
adding to the current monitoring network. Some data gaps may be easier to close 
than others. The gap analysis identifies existing monitoring assets that are not 
carbonate complete; by updating these monitoring assets through adding OA specific 
sensors, data gaps can be more efficiently closed.  
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The West Coast OAH Monitoring Inventory also identifies areas where biological 
monitoring is occurring. Pairing biological monitoring with physical monitoring assets 
can increase understanding of how changing ocean chemistry is impacting local 
marine communities.  
 
Further, monitoring of MPAs could be expanded to track changing ocean chemistry 
and attribute ecosystem impacts. While this type of monitoring was recently 
instigated for a handful of MPAs in California through a partnership between the 
California Ocean Protection Council and Reef Check, assets can be added to 
additional MPAs. This will allow for a development of methods to monitor ecosystem 
resilience and better assess adaptive capacity. 
 
Reduce Local Water Pollutants that Intensify OA  
One option to reduce localized exacerbation of OA is to minimize the input of local 
water pollutants, such as nitrogen, phosphorus, and organic carbon into coastal 
watersheds. Nutrients in the form of nitrate and phosphate can lead to eutrophication 
of nearshore coastal waters, creating hypoxic conditions. Similarly, organic carbon is 
consumed by bacteria in the water column, which respire and create low oxygen 
conditions. Hypoxia typically coincides with high seawater pCO2 and increased 
acidity. Thus, by reducing the drivers of localized hypoxic events, communities can 
also minimize exacerbations to OA. Communities can implement nutrient reduction 
programs by prioritizing subwatersheds with high nutrient-loading and working with 
landowners to achieve reduction goals. Cities can reduce nutrient inputs through 
upgrades to wastewater treatment facilities, or by incorporating water reuse 
technologies. Cities can also incorporate low-impact development to minimize the 
impacts of urban runoff. Estuarine environments are a particular priority area for 
nutrient reduction since localized processes have a relatively high influence on 
coastal water quality. The incorporation of runoff and terrestrial processes into OA 
models is critical to understanding their relative contributions to hypoxic and acidic 
conditions, which can lead to more informed policy to regulate local source pollution. 
 
Expand Water Quality Criteria to Incorporate OA Parameters 
At the state level, water quality criteria can also be updated to address OA. The 
standards for pH have remained unchanged since the Clean Water Act was written 
and could be fine-tuned to a narrower range based on biological thresholds. This 
could potentially increase the amount of coastal waters listed as “impaired” on the 
Clean Water Act 303(d) list, which would raise awareness of acidic conditions to 
managers and local decision-makers while opening up sources of funding to 
ameliorate OA stress. However, there are substantial hurdles to changing water 
quality criteria, namely funding and an arduous bureaucratic process. 
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Reduce CO2 in Seawater through “Blue Carbon” Mitigation 
Aquatic vegetation presents a mitigation tool for decreasing CO2 in local waters, 
which can ameliorate stressful conditions for OA-vulnerable marine organisms. The 
basis of this method is to protect habitats which sustain ecological and 
biogeochemical functions. Thus, kelp forests and seagrass beds can be protected, 
specifically in places where they may ameliorate local pH through carbon 
sequestration. This strategy addresses the ecological and biological concerns of OA; it 
can also serve to promote the goals of an MPA that might be threatened by 
acidification. Conservation of existing seagrass and kelp habitats will be important for 
maintaining naturally occurring OA mitigation. Furthermore, finding suitable areas 
for the restoration of seagrass and kelp will benefit OA vulnerable species and 
communities.  
 
Strengthen Resilience and Adaptive Capacity of Marine Ecosystems 
MPAs were established before much was known about OA or its impacts. Our MPA 
analysis demonstrates MPAs that co-occur with hotspots and areas that may face 
lesser exposure to OA stress.  Co-occurrence with hotspots and away from hotspots 
may both be beneficial in protecting OA vulnerable ecosystems. MPAs that co-occur 
with hotspots may promote adaptive capacity; marine organisms may be able to 
develop genetic tolerances or adaptations to OA which will be preserved in these 
MPAs. Conversely, MPAs with lesser OA exposure may prepare marine communities 
to better cope with future OA impacts by strengthening communities through 
increased diversity, productivity, and larval dispersion.  Both of these environments 
are crucial to maintaining adaptive capacity, especially in light of the uncertainty and 
variability of responses of ecosystems to OA exposure. 
 
Build Decision Maker Understanding of OA Processes and Impacts  
Because ocean acidification impacts are experienced regionally, it is important that 
key fisheries, decision-makers and regulators in the public and private sectors are 
given the necessary tools to understand the processes and impacts of the issue. This 
can be done through increased communication about OA processes, impacts, and 
responses. As predictive tools are developed and fine-tuned and forecasts of OA 
conditions should be provided to decision-makers and end-users at geographic scales 
and time frames that are relevant to their management needs. 
 
Continue Development of West Coast Ocean Data Portal to Inform Policy 
As monitoring networks expand and OA modeling advances, it is important that this 
data is used to inform policy.  By keeping data publicly accessible through data 
portals such as the West Coast Ocean Data Portal, marine managers can be more 
effective in their management strategies. Open communication between researchers 
and policy makers can ensure that OA studies and modeling efforts are policy-driven 
to the needs of OA stakeholders.  
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Conclusion	

Ocean Acidification in the California Current System is a seemingly intractable issue 
that unites stakeholders across a variety of ecosystems along the West Coast. Though 
the root cause of this problem is much larger than the scale of the California Current 
System itself, there are many avenues through which the effects of this issue may be 
mitigated or ameliorated. 
 
Primarily, greater coordinated information gathering at the regional scale can lead to 
more effective development and implementation of regional management. Analyzing 
the gaps within the existing monitoring network and the network’s suitability for 
identifying important OA trends highlights the potential for improvement and 
coordination across the region. Improved coordination on the regional scale will lead 
to more accurate modeling and predictive abilities. Moving forward, it should be a 
regional priority to make ocean acidification data available to public. This is a goal of 
the West Coast Ocean Data Portal, which plans to host the results of the West Coast 
Ocean Acidification and Hypoxia Monitoring Inventory when it is complete. Public 
data accessibility will enable communication with a wide range of stakeholders, 
which is necessary to tackle this diffuse and regional problem.  
 
Analyzing trends in OA through the lens of discrete spatial units (such as the co-
occurrence of hotspots and marine protected areas) creates a tangible management 
interface for an otherwise spatially diffuse and elusive problem. Using marine 
protected areas as a metric of analysis improves our understanding about the severity 
of threat to already identified crucial locations within our coastal region. It also 
readily offers a platform by which to incorporate adaptive management and 
restoration strategies in the face of acidification conditions. With this threat level 
information in hand, MPA managers will be able to pursue local mitigation efforts to 
increase ecosystem resilience to ocean acidification. Courses of action include but are 
not limited to reducing nutrient input through stakeholder involvement, 
implementing blue carbon techniques through seagrass and kelp restoration, and, on 
a broader scale, encouraging community reduction of greenhouse gas emissions. 
Ultimately, the scale of this issue requires a robust contingency of stakeholders 
working in unity toward common efforts and integrated approaches at the ecosystem 
and regional scale.	 	
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Appendix 1. OAH Monitoring Inventory Metadata.  
Priority Fields in orange, Descriptive Fields in green. 
	

CATEGORY FIELD CLASSIFICATIONS DESCRIPTION 

Project 
Background 

ProjectID <name> Name of monitoring project 

AssetID <name> Name of particular monitoring asset (e.g. site name) 

AreaID 
<name> 

Name of a bounding area that a sampling effort falls in, for instance a marine 
reserve. Used to merge line multiple entries to one polygon geometry. Please 
provide a shapefile with bounding geometries if you use this field. 

Region California; Oregon; 
Washington 

Denotes the jurisdiction that collected an asset's information not necessarily the 
geographic region where a asset is located. If information was reported to Sara 
Briley / COPC the region is California. If information was reported to Daniel 
Sund/ODFW the region is Oregon. 

DataFormat 

Point 
Points are entries that are represented by a fixed location in space throughout 
time.  

Polyline 
Polylines are entries that represent an asset that makes measurements while 
underway. The position for a polyline effort is not fixed. 

Polygon 
Polygon entries represent projects that utilize a systematic method to assess 
information within an area.  

Orgniztion <name> List, separated by";", of institutions conducting a product 

URL <URL> Website where data and/or project information is stored 

Notes <notes> Notes provided with responses on additional details of project 

Contact <name> Name of the point person for a given project. 

Email <email> email/contact information for primary contact 

Funding and 
Operational 
Security 

FundType 

External Funds 
Currently funded by external grants, donations, or endowments. Includes 
volunteer efforts. 

Limited Duration Program 
Funds 

Currently funded by short term (two years or less) non-renewable program 
funds. 

Dedicated Program Funds 
Currently funded by dedicated program funds that are not expected to expire 
or reduce significantly. 

FunderName <Name> Name of funding source (optional) 

FundEnd <Month-Year> 
The Month and Year (i.e. June 2016) that the current funding cycle ended / 
will end for a specific project. 
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Indefinite No end date 

FundSecurity 

Funding is continued for the 
forseeable future Funding for the project is continued and sustained. 
Current funding has option 
for renewal 

The current funding source has an option to apply for a renewal or extension 
of funding at the same or increased levels. 

Continued funding is likely 
from the same source 

Funding source has shown an interest in or history in funding this project of 
analogous projects.  

Continued funding is likely 
from other sources 

Other funding sources have shown an interest in or history in funding this 
project of analogous projects.  

Continued funding is 
unlikely but desired 

PI's would like to continue project but are unable to secure reliable and 
sustained funding. 

Not pursuing continued 
funding  

PI's are not pursuing funding for the project or the project has been 
discontinued.  

Study Type 

ProjFocus  

Physical/Biogeochemical 
Project's main aim is to characterize features of the physical environment or 
biogeochemistry. 

Biological 
Project's main aim is to characterize biological features with no direct 
examination of the physical environment 

Physical/Biogeochemical & 
Biological 

Project main aim incorporates both physical/biogeochemical information as 
well as biological (including chlorophyll). Both types of data are in reference 
tied together to inform the same question. 

PhysFocus Optional descriptive classificiation of 
focus of physical/biogeochemical studies. If study 
looked at more than one of these focus areas enter 
all that apply separated by a "/".  

Environmental 
Characterization 

If project focuses on either physical characterization or biological and physical 
characterization then this clarifies that the general goal was to generally 
characterize features of the environment that did not include oceanographic or 
seawater chemistry. Examples are spot measurements of temperature and DO 
used to provide reference to characteristics.  

Oceanographic 
Characterization 

If project focuses on either physical characterization or biological and physical 
characterization then this clarifies that the general goal was to characterize 
oceanographic aspects of the environment, such as wind shear, seawater 
chemistry, salinity, etc. outside of the estuarine environment.  

Estuarine Environmental 
Monitoring 

If project focuses on either physical characterization or biological and physical 
characterization then this clarifies that the general goal was to generally 
characterize environmental features related to the estuarine seawater 
chemistry, hydrography or other estuarine specific parameters.  

BioFocus  
Optional descriptive classification of focus for 
biological studies. If study looked at more than 
one of these focus areas enter all that apply 
separated by a "/".  

classification is determined 
study, examples include: 

 

Plankton Distribution 

Study focused on examining the distribution, abundance, and/or community 
composition of plankton. Examples are projects focusing on characterizing prey 
availability for oceanic salmon.  

Shellfish Population 
Assessment Study characterized the population, distribution, and/or abundance of shellfish 
Benthic Community 
Structure and Abundance 

Study explicitly examined the community structure of benthic in-fauna and/or 
meiofauna. May include shellfish but the purpose was general characterization 
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of community structure. 

Water Quality 
Study focused on characterizing the bacterial presence or loading within 
discrete samples. Examples include enterococcus assays. 

Habitat Characterization 

Main purpose of the study was to characterize the structure, function, or 
physical characteristics of habitat within an area. Examples include seagrass 
surveys. 

InstiType 

Agency Lead institution is affiliated with federal, state, county, or city agencies. 

Academic 
Lead institution is affiliated with an academic institution (i.e. research 
institute, university, etc.)  

Tribal  
Lead institution is affiliated with a tribal government or natural resource 
program.  

Non-profit Lead institution is affiliated with a non-profit organization. 

Academic/Agency Project is a collaborative effort lead by academic institutions and agency(ies)  

Academic/Non-profit Project is a collaborative effort lead by non-profit and academic institutions 

Agency/Tribal Project is a collaborative effort lead by agency(ies) and tribal partners 

Tribal/Academic Project is a collaborative effort lead by tribal and academic institutions 

AssetType 

Survey Area 

The asset is a represented by a polygon. Generally represents an area where 
survey efforts is concentrated. Indicative of systematic survey efforts that 
characterize more than the single points where samples are collectected. 

Cruise Station 

The asset is represented by discrete point locations visited by a cruise. Cruise 
stations are generally a single part of a broader segment or leg. Locations are 
generally at sea or in estuarine settings that allow for visit by a research vessel. 

Cruise 
The asset is represented by a polyline. Data were collected continuously while 
underway and are not represented by point locations. 

Glider 
The asset is represented by a polyline/ Data was collected continuously by a 
remotely operated or autonomous glider.  

Sample Site 

The asset is represented by point. Represents an area where data were 
collected in a discrete fashion such as with bacterial monitoring sites. Generally 
indicates that site was returned to at some frequency.  

Shoreside sensor 
The asset is represented by a point. Indicates an in situ sensor that is mounted 
shoreside in either the intertidal, a flow through seawater system, or dock side. 

Mooring 
The asset is represented by a point. Indicates an in situ sensor moored in the 
open ocean, nearshore, or estuarine environment.  

StudyType 

Cruise Study was part of a research cruise. 

Field Survey 

Study was part of a survey that was collecting data or samples in the field that 
was not a cruise. Generally indicates that the samples collected were discrete. 
May include studies that characterize habitat, water quality, population 
assessments, etc.  
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In Situ Information collected by study was collected by in situ measurements.  

OAHFocus 

Ocean acidification 
Asset measured at least one parameter of ocean acidification (pH, pCO2, TA, 
DIC) but not Hypoxia (DO) 

Ocean acidification & 
hypoxia 

Asset measured at least one parameter of ocean acidification (pH, pCO2, TA, 
DIC) AND Hypoxia (DO) 

Hypoxia Asset measured DO but no other OA parameters.  

None 

Asset did not measure OA (pH, pCO2, TA, DIC) or H (DO), but was including 
in the inventory for another reason (e.g. monitoring program represents a key 
monitoring asset, likely to expand OAH monitoring at sites) 

Location 
Characteristics 

TidalExp 
Yes or No 

Indicates whether the sensor is exposed on low tide or not. Denotes the shore 
zone and general habitat type a asset in located in. Is relative to both depth 
and habitat characteristics.  

EcoType 

Nearshore 
Asset collected information from the marine environment within an area 30m 
water depth. 

Offshore 
Asset collected information from the marine environment within an area with 
greater than 30m water depth. 

Estuarine Asset was deployed in an estuarine setting. 

Estuarine Aquaculture 
Asset was deployed in an estuarine bivalve aquaculture setting. May be in 
either hatchery or on active aquaculture facility.  

Latitude Location <latitude> 
Cartesian latitude of a point asset. Reported in decimal degrees. Data stored as 
geographic/unprojected decimal degrees in the WGS 1984 datum. 

Longitude Location<longitude> 
Cartesian longitude of a point asset. Reported in decimal degrees. Data stored 
as geographic/unprojected decimal degrees in the WGS 1984 datum. 

Depth of 
Measurements 

Depth_m_ 

<number> 

The fixed depth (meters) that measurements are recorded at an asset. If there 
are multiple discrete depths that measurements are made at separate depths 
using the ";". Do not use if information was recorded as a profile across 
multiple depths.  

ProfileMin <number> 
The shallowest depth (meters) that a profile starts to record measurements at. 
If multiple profiles are made by an asset use the shallowest depth. 

ProfileMax <number> 
The deepest depth (meters) that a profile recorded measurements at. If 
multiple profiles are made by an asset use the deepest depth. 

Temporal 
Characteristics 

MeasType 

Spot An asset collected discrete measurement on OAH parameters  

Continuous 
An asset collected measurements on OAH parameters continuously for a high 
frequency of time, in situ  

NA An asset does not collect OAH parameters 

MeasFreq  
How often are measurements collected during the 
measurement period?  
 

<number> units:minutes, 
decimal 

If asset records more frequently than every 6 hours please record the interval 
(minutes) as a continuous values. i.e. hourly would equal 60 (minutes), twice 
every minute would be 0.5 minutes.  

> 6 hours measurements collected more than once a day but less frequently than every 6 
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Please use the most frequent interval for your 
answer. (i.e. if pH sampled at 30 and pCO2 
sampled every 60 minutes then enter 30 minutes) 

hours 

Daily measurements collected once a day 

Bi-monthly measurements collected every other month 

Semi-monthly measurements collected twice a month 

Annual measurements collected once a year 

Semi-annual measurements collected twice a year 

Biannual measurements collected every other year 

Triannual measurements collected every three years 

5 years measurements collected every 5 years 

Once measurements collected only once during the measurement period. 
MeasPeriod  
 
The period during any given year that an 
instrument or project was recording 
measurements or collecting information.  

Year-round 
Measurements are collected year round, not including sensor failure or short 
gaps.  

<month - month> Measurements are collected during certain months of the year 

DataFreq <frequency> Frequency at which data is uploaded to a publically available website 

ProgDur <number> unit: year, 
integer 

Whole number of years that monitoring program collected measurements. 
Values >= 1. 

StartYr <year> Year that monitoring program began 

EndYr 
present Year that monitoring program ended/Will end 

<year> Year that monitoring program ended/Will end 

YearSamp <year - year> 
range of years asset is actively collecting data. If asset is still collecting data, 
range goes to "present" 

Ongoing Yes or No Yes: project is currently active. No: project has ended. 

OAH Parameters 

DiscSWpCO2 Yes or No Discrete seawater pCO2 measurements measured in a laboratory. 

ATMpCO2 Yes or No 
Discrete atmospheric pCO2 measurements measured using laboratory 
equipment. 

DiscSWpH Yes or No Discrete pH measurement made using laboratory methods or instruments. 

DiscTA Yes or No Discrete measurement of Total Alkalinity.  

DiscDIC Yes or No 
Discrete measurement of Dissolved In Organic Carbon using laboratory 
instruments. 
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SatSt Yes or No Study included a calculation of carbonate ion concentration. 

DiscDO Yes or No 
Discrete measurement of dissolved oxygen using laboratory instruments or 
methods. 

isSWpCO2 Yes or No in situ measurement of seawater pCO2 

isSWpH Yes or No pH was measured under in situ conditions  

isDIC Yes or No Dissolved inorganic carbon was measured under in situ conditions. 

isDO Yes or No Dissolved oxygen was measured under in situ conditions.  

CalcPmtrs 
 
If more than one is calculated separate using ";". 

pH pH is calculated rather than measured at this assset. 

pCO2 pCO2 is calculated rather than measured at this assset. 

DIC DIC is calculated rather than measured at this assset. 

TA TA is calculated rather than measured at this assset. 

Methods <methods> Method used to measure discrete parameters  

Instrument <instruments> 
Manufacturer and model of in situ instruments used to measure in situ 
parameters. 

DisCrbPmtr <number> 
Number of carbonate parameters (pH, pCO2, TA, DIC) measured at an asset 
using discrete sampling techniques. 

ISCrbPmtr <number> 
Number of carbonate parameters (pH, pCO2, TA, DIC) measured at an asset 
regardles of sample type using in situ sensors. 

Other Water 
Quality 
Parameters 

Temp Yes or No Denotes whether or not temperature was recorded by a project.  

Salinity Yes or No Denotes whether or not salinity was recorded by a project.  

Pressure Yes or No Denotes whether or not pressure was recorded by a project.  

Turbidity Yes or No Denotes whether or not Turbidity was recorded by a project.  

DOC Yes or No Denotes whether or not dissolved organic carbon was recorded by a project.  

OtherPhys <parameters> Additional physical or biogeochemical parameters measured 

Chlorophyl Yes or No Denotes whether or not chlorophyll was recorded by a project.  

Nutrients 

Nutrients Yes or No Denotes whether or not nutrients were measured by a project. 

Nitrate Yes or No Denotes whether or not nitrate concentration was determined by a project. 

Ammonium Yes or No 
Denotes whether or not ammonium concentration was determined by a 
project. 
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Phosphate Yes or No Denotes whether or not phosphate concentration was determined by a project. 

Silicate Yes or No Denotes whether or not Silicate concentration was determined by a project. 

Iron Yes or No Denotes whether or not iron concentration was determined by a project. 

Biological 
Parameters 

BioSamples 

None Project did not collect any biological samples.  

Phytoplankton Project collected measurements on phytoplankton. 

Zooplankton Project collected measurements on zooplankton. 

Invertebrates Project collected measurements on invertebrates (not including shellfish) 

Shellfish Project collected measurements on shellfish (e.g. oysters, mussels) 

Fish Project collected measurements on fish  

Macrophytes Project collected measurements on aquatic plants, including seagrass and algae 

Coral Project collected measurements on coral 

BioAbund Yes or No 
Project examined the number of organisms in the environment, the relative 
abundance (% cover), or assessed the population size.  

BioAdapt Yes or No 
Project explictly examined the ability for an organism to adapt to changing 
environmental or ecological conditions. 

BioBiomass Yes or No 
Project examined or determined the biomass of an organism relative to 
environmental conditions or assessed the population of an organism. 

BioCalc Yes or No 
Project explcitly examined the rate of calcification of an organism relative to 
environmental conditions. 

BioComm Yes or No Project explcitly examined the community composition or structure. 

BioDistr Yes or No 
Project examined the distribution or population change of an organism in space 
or time. 

BioDiv Yes or No Project examined biodiversity of ecological community. 

BioEvol Yes or No 
Project examined the ability of an population to respond to changing 
environmental conditions.  

BioFoodweb Yes or No Project examined the structure and function of the foodweb. 

BioGrRate Yes or No Project examined the change in mass, size, or volume overtime. 

BioPhtosyn Yes or No 
Project examined the rate, efficiency, or mechanism of photosynthesis relative 
to OAH conditions. 

BioRecr Yes or No Project examined the addition of organisms to a population. 

BioSurv Yes or No 
Project examined the survival or organisms relative to environmental 
conditions or predation. 
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BioMovmnt Yes or No Project examined the movement of organisms in space and time. 

BioBehvor Yes or No Project described the behavior of organisms.  

OtherBio <other> Additional biological parameters measured 
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Appendix 2. Data exploration for Hog Island in 
Tomales Bay, CA. 
 

Time series plots represent data collected by a Burkeolator deployed 
by CeNCOOS in 2015. 

 
Figure 1. Monthly Aragonite Saturation State at Hog Island for select months. 
 

 
Figure 2. Weekly Aragonite Saturation State at Hog Island for select weeks. 
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Appendix 3. Monitoring Inventory Gap Analysis R 
Code 

Ocean	Acidification	Monitoring	Inventory	Gap	Analysis	

Step	1.	Manipulate	sea	surface	temperature	and	dissolved	oxygen	
as	proxies	for	ocean	acidificiation	change	

Load	packages	
if (!require(pacman)) install.packages("pacman")	
library(pacman)	
p_load(	
  tidyverse, here, glue,	
  raster,	
  sdmpredictors, dismo, 	
  deldir, 	
  mapview,	
  tmap)	
	
devtools::load_all(here("../oatools"))	
Set	paths	and	variables	
dir_data        <- here("data")	
dir_sdmdata_old <- here("data/sdmpredictors")	
dir_cache       <- here("cache")	
dir_sdmdata     <- here("cache/sdmpredictors")	
	
SST_tif <- here("data/sst_mean.tif")	
DO_tif  <- here("data/do_mean.tif")	
Set	cache	
if (!dir.exists(dir_data))    dir.create(dir_data)	
if (!dir.exists(dir_cache))   dir.create(dir_cache)	
if (!dir.exists(dir_sdmdata) & dir.exists(dir_sdmdata_old))	
  file.rename(dir_sdmdata_old, dir_sdmdata)	
if (!dir.exists(dir_sdmdata)) dir.create(dir_sdmdata)	
Set	extent	and	coordinate	reference	system	
ext_study <- extent(-670000, 350000, -885000, 1400000)	
crs_study <- '+init=EPSG:6414'	
Create	sea	surface	temperature	layer	(mean	and	range)	
r_sst_mean_nofill <- lyr_to_tif(	
  lyr = "BO_sstmean", 	
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  tif = here("data/sst_mean.tif"),	
  crs = crs_study,	
  dir_sdm_cache = dir_sdmdata,	
  extent_crop = ext_study, 	
  redo=T, fill_na=FALSE)	
	
r_sst_mean <- lyr_to_tif(	
  lyr = "BO_sstmean", 	
  tif = here("data/sst_mean.tif"),	
  crs = crs_study,	
  dir_sdm_cache = dir_sdmdata,	
  extent_crop = ext_study, 	
  redo=T, fill_na=TRUE, fill_window=11) #caclulate mean	
	
n_na_nofill <- sum(is.na(raster::getValues(r_sst_mean_nofill)))	
n_na        <- sum(is.na(raster::getValues(r_sst_mean)))	
	
r_sst_range_nofill <- lyr_to_tif(	
  lyr = "BO_sstrange", 	
  tif = here("data/sst_range.tif"),	
  crs = crs_study,	
  dir_sdm_cache = dir_sdmdata,	
  extent_crop = ext_study, 	
  redo=T, fill_na=FALSE)	
	
r_sst_range <- lyr_to_tif(	
  lyr = "BO_sstrange", 	
  tif = here("data/sst_range.tif"),	
  crs = crs_study,	
  dir_sdm_cache = dir_sdmdata,	
  extent_crop = ext_study, 	
  redo=T, fill_na=TRUE, fill_window=11)	
Create	dissolved	oxygen	layer	(mean	and	range)	
r_do_mean_nofill <- lyr_to_tif(	
  lyr = "BO_dissox", 	
  tif = here("data/do_mean.tif"),	
  crs = crs_study,	
  dir_sdm_cache = dir_sdmdata,	
  extent_crop = ext_study, 	
  redo=T, fill_na=FALSE)	
	
r_do_mean <- lyr_to_tif(	
  lyr = "BO_dissox", 	
  tif = here("data/do_mean.tif"),	
  crs = crs_study,	
  dir_sdm_cache = dir_sdmdata,	
  extent_crop = ext_study, 	
  redo=T, fill_na=TRUE, fill_window=11) #calculate mean	
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r_do_range_nofill <- lyr_to_tif(	
  lyr = "BO2_dissoxrange_bdmin", 	
  tif = here("data/do_range.tif"),	
  crs = crs_study,	
  dir_sdm_cache = dir_sdmdata,	
  extent_crop = ext_study, 	
  redo=T, fill_na=FALSE)	
	
r_do_range <- lyr_to_tif(	
  lyr = "BO2_dissoxrange_bdmin", 	
  tif = here("data/do_range.tif"),	
  crs = crs_study,	
  dir_sdm_cache = dir_sdmdata,	
  extent_crop   = ext_study, 	
  redo=T, fill_na=TRUE, fill_window=11)	

Step	2.	Relate	SST	and	DO	trends	to	each	monitoring	site	

Load	and	clean	monitoring	inventory	
inventory <- read_csv(here("data/inventory.csv")) 

oahfocus <- subset(inventory, OAHFocus == "OA" | OAHFocus == "H" | OAHFocu
s == "OAH") # remove non-OAH focus entries 

unique(oahfocus$MeasFreq) # quantify frequencies 

oahfocus$MeasFreq[oahfocus$MeasFreq =="Once"] <- 0 
oahfocus$MeasFreq[oahfocus$MeasFreq == 10] <- 52560 
oahfocus$MeasFreq[oahfocus$MeasFreq =="< 6 hours"] <- 1460 
oahfocus$MeasFreq[oahfocus$MeasFreq == 60] <- 8760 
oahfocus$MeasFreq[oahfocus$MeasFreq =="Daily"] <- 365 
oahfocus$MeasFreq[oahfocus$MeasFreq ==30] <- 17520 
oahfocus$MeasFreq[oahfocus$MeasFreq == 20] <- 26280 
oahfocus$MeasFreq[oahfocus$MeasFreq == 15] <- 35040 
oahfocus$MeasFreq[oahfocus$MeasFreq =="Quarterly"] <- 4 
oahfocus$MeasFreq[oahfocus$MeasFreq =="Annual"] <- 1 
oahfocus$MeasFreq[oahfocus$MeasFreq =="Monthly"] <- 12 
oahfocus$MeasFreq[oahfocus$MeasFreq == 5] <- 105120 
oahfocus$MeasFreq[oahfocus$MeasFreq == 6] <- 87600 
oahfocus$MeasFreq[oahfocus$MeasFreq =="Semi-annual"] <- 2 
oahfocus$MeasFreq[oahfocus$MeasFreq == 180] <- 2920 
oahfocus$MeasFreq[oahfocus$MeasFreq == 2] <- 262800 
oahfocus$MeasFreq[oahfocus$MeasFreq == 0.25] <- 2102400 
oahfocus$MeasFreq[oahfocus$MeasFreq == 3] <- 175200 
oahfocus$MeasFreq[oahfocus$MeasFreq == 1] <- 525600 
oahfocus$MeasFreq[oahfocus$MeasFreq == 120] <- 2920 
oahfocus$MeasFreq[oahfocus$MeasFreq =="Bi-weekly"] <- 26 
oahfocus$MeasFreq[oahfocus$MeasFreq == 360] <- 1460 
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oahfocus$MeasFreq[oahfocus$MeasFreq == 720] <- 730 
oahfocus$MeasFreq[oahfocus$MeasFreq =="Seasonally"] <- 1 
oahfocus$MeasFreq[oahfocus$MeasFreq =="1/4 second"] <- 126144000 
oahfocus$MeasFreq[oahfocus$MeasFreq =="Bi-monthly"] <- 6 
oahfocus$MeasFreq[oahfocus$MeasFreq =="5  Years"] <- 0.2 
oahfocus$MeasFreq[oahfocus$MeasFreq =="Bi-weekly"] <- 26 
oahfocus$MeasFreq[oahfocus$MeasFreq =="Variable"] <- 0 
oahfocus$MeasFreq[oahfocus$MeasFreq =="Decadal"] <- 0.1 
oahfocus$MeasFreq[oahfocus$MeasFreq =="Biennial"] <- 0.5 
oahfocus$MeasFreq[oahfocus$MeasFreq =="Weekly"] <- 52 
oahfocus$MeasFreq[oahfocus$MeasFreq =="Triennial"] <- 0.33333 
oahfocus$MeasFreq[oahfocus$MeasFreq =="Trimester"] <- 3 
 
oahfocus <- oahfocus[!is.na(oahfocus$Latitude), ] # remove N/A coordinates 
oahfocus <- oahfocus[!is.na(oahfocus$Longitude), ] 
 
gsub(" ", "", oahfocus$Latitude) # remove spaces and transform to numeric 
gsub(" ", "", oahfocus$Longitude)  
gsub("'<ca>'", "", oahfocus$Longitude) 
oahfocus$Longitude <- as.numeric(oahfocus$Longitude) 
oahfocus$Latitude <- as.numeric(oahfocus$Latitude) 
 
carbcomplete <- subset(oahfocus, DisCrbPmtr>1 | ISCrbPmtr > 1) # create su
bsets 
incomplete <- subset(oahfocus, DisCrbPmtr<2 & ISCrbPmtr < 2) 
highfrequency <- subset(oahfocus, MeasFreq > 364) 
highfreqcarbcomplete <- subset(oahfocus, MeasFreq > 364 & DisCrbPmtr>1 |  

MeasFreq > 364 & ISCrbPmtr > 1) 
lowfrequency <- subset(oahfocus, MeasFreq < 365) 

Transform	subsets	into	spatial	data	
coords <- cbind.data.frame(oahfocus$Longitude, oahfocus$Latitude) #isolate 
coordinate columns 
carbcompletecoords <- cbind.data.frame(carbcomplete$Longitude, carbcomplet
e$Latitude) 
incompletecoords <- cbind.data.frame(incomplete$Longitude, incomplete$Lati
tude) 
highfrequencycoords <- cbind.data.frame(highfrequency$Longitude, highfrequ
ency$Latitude) 
lowfrequencycoords <- cbind.data.frame(lowfrequency$Longitude, lowfrequenc
y$Latitude) 
highfreqcarbcompletecoords <- cbind.data.frame(highfreqcarbcomplete$Longit
ude, highfreqcarbcomplete$Latitude) 
 
deduped.coords <- unique(coords) # remove duplicate locations	
deduped.carbcomplete <- unique(carbcompletecoords) 
deduped.incomplete <- unique(incompletecoords) 
deduped.highfrequency <- unique(highfrequencycoords) 
deduped.lowfrequency <- unique(lowfrequencycoords) 
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deduped.highfreqcarbcomplete <- unique(highfreqcarbcompletecoords) 
 
inventorycoords <- SpatialPoints(deduped.coords, CRS("+proj=longlat +ellps
=WGS84"))	
inventorycoords <- spTransform(inventorycoords, CRS('+init=EPSG:6414')) # 
create spatial points objects 

carbcompletecoords <- SpatialPoints(deduped.carbcomplete, CRS("+proj=longl
at +ellps=WGS84")) 

carbcompletecoords <- spTransform(carbcompletecoords, CRS('+init=EPSG:6414
')) 

incompletecoords <- SpatialPoints(deduped.incomplete, CRS("+proj=longlat +
ellps=WGS84")) 

incompletecoords <- spTransform(incompletecoords, CRS('+init=EPSG:6414')) 

highfreqcoords <- SpatialPoints(deduped.highfrequency, CRS("+proj=longlat 
+ellps=WGS84")) 

highfreqcoords <- spTransform(highfreqcoords, CRS('+init=EPSG:6414')) 

lowfreqcoords <- SpatialPoints(deduped.lowfrequency, CRS("+proj=longlat +e
llps=WGS84")) 

lowfreqcoords <- spTransform(lowfreqcoords, CRS('+init=EPSG:6414')) 

highfreqcarbcompletecoords <- SpatialPoints(deduped.highfreqcarbcomplete, 
CRS("+proj=longlat +ellps=WGS84")) 

highfreqcarbcompletecoords <- spTransform(highfreqcarbcomplete, CRS('+init
=EPSG:6414')) 

Create	voronoi	polygons	
vor <-voronoi(inventorycoords) 

carbcompletevor <- voronoi(carbcompletecoords) 

incompletevor <- voronoi(incompletecoords) 

highfreqvor <- voronoi(highfreqcoords) 

lowfreqvor <- voronoi(lowfreqcoords)	
	
vorraster<- rasterize(vor, r_sst_mean, "id") #rasterize 

carbcompletevorraster<- rasterize(carbcompletevor, r_sst_mean, "id") 

incompletevorraster<- rasterize(incompletevor, r_sst_mean, "id") 

highfreqvorraster<- rasterize(highfreqvor, r_sst_mean, "id") 
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lowfreqvorraster<- rasterize(lowfreqvor, r_sst_mean, "id") 	
Extract	SST	mean	and	range	for	each	monitoring	site	cell	and	substitute	value	for	each	
voronoi	polygon	
sitesst<- raster::extract(r_sst_mean, inventorycoords, method='simple', df
=TRUE) # extract SST value for each monitoring site cell 
carbcompletesitesst<- raster::extract(r_sst_mean, carbcompletecoords, meth
od='simple', df=TRUE) 
highfreqsitesst<- raster::extract(r_sst_mean, highfreqcoords, method='simp
le', df=TRUE)		
	
colnames(sitesst)<- c("id", "SST") #rename column names of site SST 
colnames(carbcompletesitesst)<- c("id", "SST") 
colnames(highfreqsitesst)<- c("id", "SST") 
 
polygonsst <- subs(vorraster, sitesst, by="id", which="SST", subsWithNA=FA
LSE) # substitute polygon ID for monitoring site SST of that polygon 
carbcompletepolygonsst <- subs(carbcompletevorraster, carbcompletesitesst, 
by="id", which="SST", subsWithNA=FALSE) 
highfreqpolygonsst <- subs(highfreqvorraster, highfreqsitesst, by="id", wh
ich="SST", subsWithNA=FALSE) 
 
sitesstrange<- raster::extract(r_sst_range, inventorycoords, method='simpl
e', df=TRUE) # repeat with SST range 
carbcompletesitesstrange<- raster::extract(r_sst_range, carbcompletecoords
, method='simple', df=TRUE) 
highfreqsitesstrange<- raster::extract(r_sst_range, highfreqcoords, method
='simple', df=TRUE) 
 
colnames(sitesstrange)<-c("id", "SSTrange") 
colnames(carbcompletesitesstrange)<- c("id", "SSTrange") 
colnames(highfreqsitesstrange)<- c("id", "SSTrange") 
 
polygonsstrange<-subs(vorraster, sitesstrange, by="id", which="SSTrange", 
subsWithNA=FALSE) 
carbcompletepolygonsstrange <- subs(carbcompletevorraster, carbcompletesit
esstrange, by="id", which="SSTrange", subsWithNA=FALSE) 
highfreqpolygonsstrange <- subs(highfreqvorraster, highfreqsitesstrange, b
y="id", which="SSTrange", subsWithNA=FALSE) 

Repeat	with	DO	
sitedo<- raster::extract(r_do_mean, inventorycoords, method='simple', df=T
RUE) # extract DO value for each monitoring site cell 
carbcompletesitedo<- raster::extract(r_do_mean, carbcompletecoords, method
='simple', df=TRUE) 
highfreqsitedo<- raster::extract(r_do_mean, highfreqcoords, method='simple
', df=TRUE) 
 
colnames(sitedo)<-c("id", "DO") # rename column names of site DO 
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colnames(carbcompletesitedo)<- c("id", "DO") 
colnames(highfreqsitedo)<- c("id", "DO") 
 
polygondo<-subs(vorraster, sitedo, by="id", which="DO") # substitute polyg
on ID for monitoring site DO of that polygon 
carbcompletepolygondo<-subs(carbcompletevorraster, carbcompletesitedo, by=
"id", which="DO") 
highfreqpolygondo<-subs(highfreqvorraster, highfreqsitedo, by="id", which=
"DO") 
  
sitedorange<- raster::extract(r_do_range, inventorycoords, method='simple'
, df=TRUE) # repeat with DO range 
carbcompletesitedorange<- raster::extract(r_do_range, carbcompletecoords, 
method='simple', df=TRUE) 
highfreqsitedorange<- raster::extract(r_do_range, highfreqcoords, method='
simple', df=TRUE) 
 
colnames(sitedorange)<-c("id", "DOrange") 
colnames(carbcompletesitedorange)<- c("id", "DO") 
colnames(highfreqsitedorange)<- c("id", "DO") 
 
polygondorange<-subs(vorraster, sitedorange, by="id", which="DOrange") 
carbcompletepolygondorange<-subs(carbcompletevorraster, carbcompletesitedo
range, by="id", which="DO") 
highfreqpolygondorange<-subs(highfreqvorraster, highfreqsitedorange, by="i
d", which="DO") 

Step	3.	Create	“oceanographic	variability”	layer	relative	to	
monitoring	asset	

Normalize	values		
r_sst_mean_nofill <- r_sst_mean_nofill/maxValue(r_sst_mean_nofill) 
r_sst_range_nofill <- r_sst_range_nofill/maxValue(r_sst_range_nofill) 
r_do_mean_nofill <- r_do_mean_nofill/maxValue(r_do_mean_nofill) 
r_do_range_nofill <- r_do_range_nofill/maxValue(r_do_range_nofill) 
 
polygonsst <- polygonsst/maxValue(r_sst_mean_nofill) 
carbcompletepolygonsst <- carbcompletepolygonsst/maxValue(r_sst_mean_nofil
l) 
highfreqpolygonsst <- highfreqpolygonsst/maxValue(r_sst_mean_nofill) 
 
polygonsstrange <- polygonsstrange/maxValue(r_sst_range_nofill) 
carbcompletepolygonsstrange<-carbcompletepolygonsstrange/maxValue(r_sst_ra
nge_nofill) 
highfreqpolygonsstrange <- highfreqpolygonsstrange/maxValue(r_sst_range_no
fill) 
 
polygondo <- polygondo/maxValue(r_do_mean_nofill) 
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carbcompletepolygondo <- carbcompletepolygondo/maxValue(r_do_mean_nofill)  
highfreqpolygondo <- highfreqpolygondo/maxValue(r_do_mean_nofill) 
 
polygondorange <- polygondorange/maxValue(r_do_range_nofill) 
carbcompletepolygondorange<-carbcompletepolygondorange/maxValue(r_do_range
_nofill) 
highfreqpolygondorange <- highfreqpolygondorange/maxValue(r_do_range_nofil
l) 

Create	spatial	and	temporal	variation	values		
# variation = (imean - amean) + (imean - amean)*(irange – arrange) 
where i = cell in raster of study area and a = cell containing nearest 
monitoring site 
 
sstmeandiff <- abs(r_sst_mean_nofill - polygonsst) # SST mean 
carbcompletesstmeandiff <- abs(r_sst_mean_nofill - carbcompletepolygonsst) 
highfreqsstmeandiff <- abs(r_sst_mean_nofill - highfreqpolygonsst) 
 
sstrangediff <- abs(r_sst_range_nofill - polygonsstrange) # SST range 
carbcompletesstrangediff <- abs(r_sst_range_nofill - carbcompletepolygonss
trange) 
highfreqsstrangediff <- abs(r_sst_range_nofill - highfreqpolygonsstrange) 
 
domeandiff <- abs(r_do_mean_nofill - polygondo) # DO mean 
carbcompletedomeandiff <- abs(r_do_mean_nofill - carbcompletepolygondo) 
highfreqdomeandiff <- abs(r_do_mean_nofill - highfreqpolygondo) 
 
dorangediff <- abs(r_do_range_nofill - polygondorange) # DO range 
carbcompletedorangediff <- abs(r_do_range_nofill - carbcompletepolygondora
nge) 
highfreqdorangediff <- abs(r_do_range_nofill - highfreqpolygondorange) 
	

Step	4.	Identify	gaps	

Identify	gaps	based	on	distance	between	monitoring	points,	qualified	by	strength	of	
variability	
distanceweight = 10^-11 
temporalweight = 10  
 
dissimilarity <- sqrt((sstmeandiff^2 + domeandiff^2) + temporalweight * (s
strangediff^2 + dorangediff^2)) # Oceanographic dissimilarity 
 
carbcompletedissimilarity <- sqrt((carbcompletesstmeandiff^2 + carbcomplet
edomeandiff^2) + temporalweight * (carbcompletesstrangediff^2 + carbcomple
tedorangediff^2)) 
 
highfreqdissimilarity <- sqrt((highfreqsstmeandiff^2 + highfreqdomeandiff^
2) + temporalweight * (highfreqsstrangediff^2 + highfreqdorangediff^2))  
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Sensitivity	analysis	
# Create matrix of weights 

distanceweight = c(10^-5, 10^-6, 10^-7, 10^-8, 10^-9, 10^-10, 10^-11, 10^-
12, 10^-13, 10^-14) 

temporalweight = c(2, 4, 6, 8, 10, 12, 14, 16, 18, 20) 

# Create list of 100 rasters of top 1% of gaps 

rastersensitivity <- list() 

for(i in 1:length(distanceweight)){ 

  for(j in 1:length(temporalweight)){ 

    dissimilarity <- sqrt((sstmeandiff^2 + domeandiff^2) + temporalweight[
j]*(sstrangediff^2 + dorangediff^2)) 

    distance <- distanceFromPoints(dissimilarity, inventorycoords) * dista
nceweight[i] 

    gap <- setValues(distance, sqrt((getValues(distance)^2 + (getValues(di
ssimilarity)^2)))) 

    highprioritygaps <- setValues(distance, sqrt((getValues(distance)^2 + 
(getValues(dissimilarity)^2)))) > quantile(gap, (.99)) 

    name = paste(temporalweight[j], distanceweight[i], sep = "_") 

    rastersensitivity[[name]] = highprioritygaps 

  } 

} 

# Transform to RasterStack 

sensitivitystack <- stack(rastersensitivity[[1]]) 
 
for(i in 2:length(rastersensitivity))  

sensitivitystack <- addLayer(sensitivitystack, rastersensitivity[[i]
]) 
 
# Add up values 

sum <- sum(sensitivitystack) 
 
plot(sum) 
 
freq(sum) 
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overlap <- setValues(sum, getValues(sum == 100)) 
 
plot(overlap) 
 
freq(overlap) 

Visualize	gaps	along	the	West	Coast	
poly_coast <- readOGR(dsn=path.expand("Export_Output_2"), layer="Export_Ou
tput_2") 

poly_coast <- spTransform(poly_coast, crs(gaps)) 

gaps_clipped <- mask(gaps, poly_coast, inverse = TRUE, progress='text') 

Map	final	gaps	
tm_shape(finalgaps) + 
  tm_raster(palette = pal(4), colorNA = NULL, breaks = c(-0.5, 0.5, 1.5, 2
.5, 3.5), title = "Ocean Acidification Data Gaps", labels = c("Sufficient 
Data", "Low Priority Gaps", "High Priority Gaps", "Severe Gaps")) + 
  tm_layout(main.title = "Data Gap Severity", main.title.size = 1, bg.colo
r = "white", main.title.position = c("center", "top"), legend.show = TRUE, 
legend.position = c("right", "center"), fontfamily = "serif", fontface = "
bold") +  
  tm_layout(basemaps = c('OpenStreetMap')) + 
  tm_legend() + 
  tm_shape(inventorycoords) + 
  tm_dots(col = "black") 
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Appendix 4. Sea Surface Temperature and 
Dissolved Oxygen Layers 
Layers used to account for oceanographic variability as part of the 
Gap Analysis. Raster layers are from the Bio-ORACLE dataset (Assis 
et al. 2017, Tyberghein et al. 2012). Rasters for the mean and range 
of each parameter represent data from 2000-2014 based on monthly 
averages. The data are derived from satellite and in situ observations 
and downscaled to a common spatial resolution using kriging. The 
default projection is Behrmann cylindrical equal-area and the 
resolution is 5 arcmin (~9.2 km at the equator). 
 
 

 
 

Figure 1. Mean Sea Surface Temperature 
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Figure 2. Range Sea Surface Temperature 
	

 
	

Figure 3. Mean Surface Dissolved Oxygen Concentration 
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Figure 4. Range Surface Dissolved Oxygen Concentration 
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Appendix 5. Oceanographic Dissimilarity 
Generated with the layers from Bio-ORACLE. The visualization shows 
high variability off the coast of central Oregon as well as in the 
southern half of Puget Sound. 
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Appendix 6. Metadata and sampling locations for 
each NOAA West Coast Ocean Acidification 
Cruise 

Title Dates 
Geographic 
Boundaries Range 

 Cruise 
Stations 

Transect 
lines 

2013 West Coast Ocean 
Acidification Cruise 

August 3-10, 
21-29, 2013 

36.52°N to 48.84°N by 
126.61°W to 
121.85°W 

Vancouver 
Island, CAN to 
Point Sur, CA 76 10 

2012 West Coast Ocean 
Acidification Cruise 

September 
4-17, 2012 

37.67°N to 48.38°N by 
126.09°W to 
122.89°W 

Olympic Coast, 
WA to Point 
Sur, CA 77 14 

2011 West Coast Ocean 
Acidification Cruise 

August 12-
30, 2011 

31.95°N to 48.38°N by 
127.55°W to 
117.75°W 

Olympic Coast, 
WA to San 
Diego, CA 90 13 

2007 West Coast Ocean 
Acidification Cruise 

May 11 - 
June 14, 
2007 

24.92°N to 52.23°N by 
112.82°W to 
132.82°W 

Bella Bella, 
CAN to Baja 
California, MX 115 13 

 
    2013 Cruise Stations     2012 Cruise Stations 
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2011 Cruise Stations       2007 Cruise Stations 

     
 
	



 89 

Appendix 7. OA Hotspots and MPA Analysis R 
Code 

Ocean	Acidification	Hotspot	and	MPA	Analysis	

Part	1.	Create	Predicted	Aragonite	Saturation	State	Surfaced	via	
Kriging	

Load	packages	
if (!require(pacman)) install.packages("pacman")	
library(pacman)	
p_load(	
  tidyverse, here, 	
  sp, rgdal, gstat, raster, 	
  mapview)	
Prepare	cruise	data	set	
aragonite_data <- read_csv(here("data/WCOAC_2013_test.csv")) #load data	
colnames(aragonite_data) <- c("Date", "Time", "Lat", "Long", "Pressure", "
OmegaAr") #rename columns in dataframe	
	
aragonite_data <- aragonite_data %>% #remove N/A values	
  mutate(OmegaAr=replace(OmegaAr, OmegaAr==-999.000, NA)) %>%	
  na.omit(aragonite_data)	
	
aragonite_data<- aragonite_data[aragonite_data[, 5]<5,] #filter for surfac
e observations	
	
coordinates(aragonite_data)<-  ~ Long + Lat #transform into spatial points	
	
zd<-zerodist(aragonite_data)	
aragonite_data<-aragonite_data[-zd[,2],] #remove observations taken at sam
e coordinate point	
Interpolation	via	simple	kriging	
aragonite_var<-variogram(OmegaAr ~1, data=aragonite_data, alpha=c(0, 45, 9
0, 135))	
plot(aragonite_var) #look for anisotropy and create variogram of aragonite 
values	

89 



 90 

	
aragonite_fit<-fit.variogram(aragonite_var,model=vgm(nugget=0.2,psill=1,ra
nge=2,model="Exp", anis=c(0, 0.3))) #fit a model to the values based on es
timated nugget, sill, and range, and anisotropy	
plot(aragonite_var,aragonite_fit) 	
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extent <- bbox(aragonite_data) #get extent of cruise observations 	
long<-seq(extent[1,1],extent[1,2],length=388) #increase ROI by one degree 
in each direction	
lat<-seq(extent[2,1],extent[2,2],length=1000)	
	
aragonite_grid<-expand.grid(long,lat) #create grid for interpolation surfa
ce	
colnames(aragonite_grid)<- c("long", "lat")	
coordinates(aragonite_grid) <- ~ long + lat	
gridded(aragonite_grid)=TRUE	
	
aragonitekrige<-krige(OmegaAr ~ 1, aragonite_data, newdata=aragonite_grid, 
model=aragonite_fit) #run kriging on interpolation grid, based on best fit 
model	
Create	continuous	raster	
aragonite_raster<-raster(aragonitekrige, layer=1, values=TRUE) #transform 
krige object to raster	
projection(aragonite_raster) <- CRS("+proj=longlat +datum=WGS84") #set CRS 	
aragonite_raster_proj <- projectRaster(aragonite_raster, crs=CRS('+init=EP
SG:6414'),method="ngb") #re-project to California Teale Albers Equal Area	
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Part	2.	Create	hotspot	thresholds	mask	
thresholds <- c(0,1,1, 1,1.7,1.7, 1.7,2,2, 2,10,NA)	
thresholdsmatrix <- matrix(thresholds, ncol=3, byrow=TRUE)	
hotspotmask <- reclassify(aragonite_raster_proj, thresholdsmatrix)	

Part	3.	Compare	predicted	aragonite	saturation	state	and	hotspots	
to	MPA	Location	

Load	shapefiles	
poly_MPA <- readOGR(dsn=path.expand("/Users/Madi/Documents/UCSB Bren/Resil
ienSeas/all_mpas_update"), layer="all_mpas_update") #load MPAs	
	
poly_MPA <- spTransform(poly_MPA, crs(aragonite_raster_proj)) #assign same 
CRS as aragonite layer	
	
poly_coast<- readOGR(dsn=path.expand("/Users/Madi/Documents/UCSB Bren/Resi
lienSeas/Export_Output_2"), layer="Export_Output_2") #load coast	
	
poly_coast <- spTransform(poly_coast, crs(aragonite_raster_proj)) #assign 
same CRS		
Canada  <- readOGR(dsn=path.expand("/Users/courtneycochran/Downloads/Canad
a"), layer="Canada") # load Canadian coast file		
Canada <- spTransform(Canada, crs(aragonite_raster_proj)) #assign same CRS	
estuary  <- readOGR(dsn=path.expand("/Users/courtneycochran/Downloads/estu
aries"), layer="altb02") # load estuaries		
estuary <- spTransform(estuary, crs(aragonite_raster_proj)) #assign same C
RS 

pugetsound <- readOGR(dsn=path.expand("/Users/courtneycochran/Downloads/ho
tspot_square"), layer="hotspot_square") #load Puget Sound shape 

pugetsound <- spTransform(pugetsound, crs(aragonite_raster_proj)) #assign 
same CRS	
Clip	rasters	to	coast	
aragonite_clipped <- mask(aragonite_raster_proj, poly_coast, inverse = TRU
E) #clip continuous raster	
aragonite_clipped <- mask(aragonite_clipped, estuary, inverse= TRUE, progr
ess='text') #remove nearshore estuaries from analysis 
aragonite_clipped <- mask(aragonite_clipped, Canada, inverse= TRUE, progre
ss='text') #clip to Canadian coast 
 
hotspot_clipped <- mask(hotspotmask, poly_coast, inverse = TRUE) #clip hot
spot mask 
hotspot_clipped <- mask(hotspot_clipped, estuary, inverse=TRUE) #remove ne
arshore estuaries from analysis 
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hotspot_clipped <- mask(hotspot_clipped, Canada, inverse=TRUE) #clip to Ca
nadian coast	
Zonal	statistics	-	mean	saturation	state	
aragonite_mean<- raster::extract(aragonite_clipped, poly_MPA, fun=mean, na
.rm=TRUE, df=TRUE) #calculate mean aragonite saturation state from continu
ous layer and export as dataframe	
colnames(aragonite_mean) <- c("OBJECTID", "ARAGONITE_MEAN")	
	
poly_MPA@data[,1] <- seq(1, length(poly_MPA@data[,1])) #Replace "OBJECTID" 
with sequenced list to remove duplicates and change from factor to integer 
form	
poly_MPA@data <- poly_MPA@data %>% 	
  left_join(aragonite_mean, by = 'OBJECTID')	
Zonal	statistics	-	percent	cover	of	hotspot	
pctcover <- raster::extract(hotspot_clipped, poly_MPA, fun=function(x, ...
) length(na.omit(x))/length(x), df=TRUE) #calculate percentage of total MP
A area covered by threshold of concern	
colnames(pctcover) <- c("OBJECTID", "PCT_HOTSPOTCOVER")	
	
poly_MPA@data <- poly_MPA@data %>% 	
  left_join(pctcover, by = 'OBJECTID')	

Part	4.	Visualize	MPAs	and	hotspots	

Zonal	statistics	-	percent	cover	of	hotspot	
pal <- colorRampPalette(c("red", "white", "royalblue2")) 

tm_shape(aragonite_clipped_2) + 
  tm_raster(palette = pal(3),  breaks = seq(0.8,3, by=0.2), 
             title="Aragonite Saturation State") +  
  tm_layout(basemaps = c('OpenStreetMap')) 
 
 
tm_shape(poly_MPA) + tm_polygons("ARAGONITE_MEAN", palette=pal(3), colorNA
=NULL, 
       breaks = seq(0.8,3, by=0.2), 
       title="Mean Aragonite \nSaturation State") + 
  tm_layout(basemaps = c('OpenStreetMap')) 
	
	
 

93 



 94 

Appendix 8. Raw Kriging Output and Standard 
Error of Predictions for NOAA OA Cruises 
Kriging output and standard error of predictions for each NOAA OA 
Cruise (2012, 2011, 2007). The visualizations on the left show that 
the predictive power of our interpolation degrades quickly over the 
longshore direction. The visualization on the right demonstrates the 
standard error of our interpolation. Lower standard error values co-
occur with our identified locations of hotspots.   
 

2012 Cruise 
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2011 Cruise 
	

 
	

2007 Cruises 
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Appendix 9. Aragonite Saturation State 
Interpolation Outputs for NOAA OA Cruises 
Continuous aragonite saturation state interpolation and ocean 
acidification hotspot raster for 2007, 2011, and 2012 NOAA West 
Coast Ocean Acidification Cruise.  
	

2012 Cruise 
 

    
	

Aragonite Saturation Layer       OA Hotspots 
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2011 Cruise 
 

    
	

Aragonite Saturation Layer    OA Hotspots 
	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 98 

2007 Cruise 
 

   
 

Aragonite Saturation Layer    OA Hotspots 
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Appendix 10. Marine Protected Area Metadata 
from Anthropocene Institute 
 

Data Source: Anthropocene Institute (AI) 

Name: U.S. Marine Protected Areas Boundaries: MPA 
Inventory 

Shapefile Names: mpa_wa_shp, mpa_ca_shp, mpa_or_shp 

Publication Date: 2016 

Website: http://www.anthropoceneinstitute.com/oceans/over
fishing/mpa/ 

Extent: 150° West to 110° West, 48° North to 20° North 

File Type: Shapefile  

GCS: WGS_1984 

Classifications of Managing 
Authority: Agency with presiding jurisdiction over marine area 

Classifications of Purpose: 
2-4 sentences explaining what is special about this 
marine areas; number of habitats and endangered 
species 

Classifications of 
Restrictions: 

Lists prohibited or entirely banned marine-related 
activities (fishing, dumping, pollution, anchoring, 
boating) and outlines restricted commercial and/or 
recreational fishing activities 
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Appendix 11. MPA Analysis Outputs 
Mean aragonite saturation state and percent hotspot cover for West 
Coast MPAs based on each year of the NOAA OA Cruise (2007, 
2011, 2012). 
	

2012 Cruise 
 

     
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 101 

2011 Cruise 
 

   
 

 
2007 Cruise 
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Appendix 12. Model Comparison Analysis 
 

West Coast Ocean Acidification Models   

Model Name LiveOcean J-SCOPE ROMS coupled to BEC 
Working 
Group 

UW Coastal Modeling 
Group 

JISAO of UW with 
NOAA’s NW Fisheries 
Science Center 

SCCWRP, UCLA Institute 
of the Environmental and 
Sustainability Coastal 
Center, NOAA PMEL, UW 

Goal Provide 3-7 day forecasts 
of aragonite saturation 
state and pH of waters 
entering shellfish 
growing areas on the 
coast.  Focused on 
making high-quality 
short-term forecasts 

Provide seasonal (6-9 
month) forecasts of 
oceanic properties, 
including aragonite 
saturation state and 
oxygen. Forecasts are 
available twice per year 
(January and April)  

Understand large-scale 
changes in climate on 
small regions and the 
effects of localized nutrient 
inputs on acidic and 
hypoxic conditions.  

Extent 43°N to 50°N including 
Puget Sound (OR-WA-BC 
Coast and Salish Sea) 

43°N to 50°N including 
Puget Sound  

Baja to British Columbia  

Spatial 
Resolution 

Horizontal- 1.5km on 
coast, 4.5 km offshore; 
40 vertical layers   

Horizontal- 1.5km; 40 
vertical layers  

Variable (4 km, 1 km, 300 
m, 100 m)  

Temporal 
Scale 

Runs daily on 72 cores, 
takes 1.5 hours for 3 
days of model time; 
model has been running 
continuously since 
January 2013  

Runs daily on 72 cores, 
takes 1.5 hours for 3 
days of model time 

Variable; we represent the 
recent 20 years for the 4 
km resolution run, 5-10 
years for the 1 km grid, 
and a few months for the 
very high-resolution grids 
(<300 m).  

Public 
Availability 

Available on NANOOS 
NVS  

Available on NANOOS 
NVS  

Pending– will be made 
publicly available at later 
date 
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Appendix 13. Agreement of Findings with 
Previous Studies 
Analysis from Feely et al. 2016 shown on the left and our interpolation 
analysis shown on the right. Using the same data set and aragonite 
state calculation methods but different interpolation tools, our analysis 
reveals a similar trend of aragonite saturation state based on the 2013 
Ocean Acidification cruise. Hotspots (i.e. areas of undersaturation with 
respect to aragonite) are shown offshore from the Columbia River and 
along the Northern coast of Oregon. Similarly cold spots can be seen 
emerging near the San Francisco Bay area. 
 

  


